首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immature B cells display increased sensitivity to tolerance induction compared with their mature counterparts. The molecular mechanisms underlying these differences are poorly defined. In this study, we demonstrate unique maturation stage-dependent differences in B cell Ag receptor (BCR) signaling, including BCR-mediated calcium mobilization responses. Immature B cells display greater increases in intracellular calcium concentrations following Ag stimulation. This has consequences for the induction of biologically relevant responses: immature B cells require lower Ag concentrations for activation than mature B cells, as measured by induction of receptor editing and CD86 expression, respectively. BCR-induced tyrosine phosphorylation of CD79a, Lyn, B cell linker protein, and phospholipase Cgamma2 is enhanced in immature B cells and they exhibit greater capacitative calcium entry in response to Ag. Moreover, B cell linker protein, Bruton's tyrosine kinase, and phospholipase Cgamma2, which are crucial for the induction of calcium mobilization responses, are present at approximately 3-fold higher levels in immature B cells, potentially contributing to increased mobilization of calcium. Consistent with this possibility, we found that the previously reported lack of inositol-1,4,5-triphosphate production in immature B cells may be explained by enhanced inositol-1,4,5-triphosphate breakdown. These data demonstrate that multiple mechanisms guarantee increased Ag-induced mobilization of calcium in immature B cells and presumably ensure elimination of autoreactive B cells from the repertoire.  相似文献   

2.
2B4 is a SLAM-related receptor expressed on natural killer (NK) cells and cytotoxic T cells. It can regulate killing and gamma interferon secretion by NK cells, as well as T-cell-mediated cytotoxicity. There are conflicting data regarding the mechanism of action of 2B4. In these studies, we attempted to understand better the nature and basis of 2B4 signaling. Our studies showed that engagement of 2B4 on NK cells triggered a tyrosine phosphorylation signal implicating 2B4, Vav-1, and, to a lesser extent, SHIP-1 and c-Cbl. Structure-function analyses demonstrated that this response was defined by a series of tyrosine-based motifs in the cytoplasmic region of 2B4 and was not influenced by the extracellular or transmembrane segment of 2B4. In addition, the 2B4-induced signal was absolutely dependent on coexpression of SAP, a Src homology 2 (SH2) domain-containing adaptor associating with SLAM-related receptors and mutated in X-linked lymphoproliferative disease. It was also observed that 2B4 was detectably associated with the Src-related protein tyrosine kinase FynT in an immortalized NK cell line. Mutation of arginine 78 of SAP, a residue critical for binding of SAP to FynT, eliminated 2B4-mediated protein tyrosine phosphorylation, implying that SAP promotes 2B4 signaling most probably by recruiting FynT. Finally, despite the similarities in the signaling modalities of 2B4 and its relative SLAM, the natures of the tyrosine phosphorylation signals induced by these two receptors were found to be different. These differences were not caused by variations in the extent of binding to SAP but rather were dictated by the tyrosine-based sequences in the cytoplasmic domain of the receptors. Taken together, these data lead to a better understanding of 2B4 signaling. Furthermore, they provide firm evidence that the signals transduced by the various SLAM-related receptors are unique and that the specificity of these signals is defined by the distinctive arrays of intracytoplasmic tyrosines in the receptors.  相似文献   

3.
Binding of antigen to B-cell antigen receptor (BCR) leads to antigen internalization and presentation to T cells, a critical process in the initiation of the humoral immune response. However, antigen internalization has been demonstrated for soluble antigen, in vivo antigen is often encountered in insoluble form or tethered to a cell surface. Here, we show that not only can B cells internalize and present large particulate antigen (requiring a signalling-competent BCR to drive antigen uptake), but they can also extract antigen that is tethered tightly to a non-internalizable surface. The form in which the antigen is displayed affects the B cell's ability to discriminate antigen-BCR affinity. Thus, arraying an antigen on a particle or surface allows efficient presentation of low affinity antigens. However, the presentation efficiency of antigen arrayed on an internalizable particle plateaus at low affinity values. In contrast, extraction and presentation of antigen from a non-internalizable surface depends on antigen-BCR affinity over a wide affinity range. The results have implications for understanding both the initiation and affinity maturation of the immune response.  相似文献   

4.
IgH and L chain transgenes encoding a phosphocholine (PC)-specific Ig receptor were introduced into recombinase-activating gene (Rag-2-/-) knockout mice. The PC-specific B cells that developed behaved like known autoreactive lymphocytes. They were 1) developmentally arrested in the bone marrow, 2) unable to secrete Ab, 3) able to escape clonal deletion and develop into B1 B cells in the peritoneal cavity, and 4) rescued by overexpression of bcl-2. A second IgL chain was genetically introduced into Rag-2-/- knockout mice expressing the autoreactive PC-specific Ig receptor. These dual L chain-expressing mice had B cells in peripheral lymphoid organs that coexpressed both anti-PC Ab as well as Ab employing the second available L chain that does not generate an autoreactive PC-specific receptor. Coexpression of the additional Ig molecules rescued the autoreactive anti-PC B cells and relieved the functional anergy of the anti-PC-specific B cells, as demonstrated by detection of circulating autoreactive anti-PC-Abs. We call this novel mechanism by which autoreactive B cells can persist by compromising allelic exclusion receptor dilution. Rescue of autoreactive PC-specific B cells would be beneficial to the host because these Abs are vital for protection against pathogens such as Streptococcus pneumoniae.  相似文献   

5.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

6.
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.  相似文献   

7.
Lipases are extracellular peripheral proteins that act at the surface of lipid emulsions stabilized, typically, by phospholipids. At a critical composition lipase activity toward substrates in phospholipid monolayers is discontinuously switched on by a small increase in substrate mole fraction. This occurs in part because lipase binding is inhibited by phospholipids. Binding of the lipase cofactor, colipase, is also inhibited by phospholipids. The initial rate of colipase binding increases abruptly at a substrate mole fraction that is approximately half the critical composition for lipase activity and just above that in substrate-phospholipid complexes. Moreover, complex collapse areas show an approximately 1:1 correlation with phospholipid excluded areas determined from an analysis of colipase adsorption rates. Thus, complexes inhibit colipase binding rate. Additionally, the switching of lipase activity likely occurs when uncomplexed substrate becomes the majority species in the interface. Lipase substrates, e.g. diacylglycerols, are typically the same lipids generated in the cytoplasmic surface of the plasma membrane of stimulated cells. As colipase binding is nonspecific and complexes involving lipase substrates form on the basis of lipid-lipid interactions alone, complexes should form in the plasma membrane of stimulated cells and may regulate protein translocation to the membrane.  相似文献   

8.
B cell Ag receptor (BCR) signaling changes dramatically during B cell development, resulting in activation in mature B cells and apoptosis, receptor editing, or anergy in immature B cells. BCR signaling in mature B cells was shown to be initiated by the translocation of the BCR into cholesterol- and sphingolipid-enriched membrane microdomains that include the Src family kinase Lyn and exclude the phosphatase CD45. Subsequently the BCR is rapidly internalized into the cell. Here we show that the BCR in the immature B cell line, WEHI-231, does not translocate into lipid rafts following cross-linking nor is the BCR rapidly internalized. The immature BCR initiates signaling from outside lipid rafts as evidenced by the immediate induction of an array of phosphoproteins and subsequent apoptosis. The failure of the BCR in immature B cells to enter lipid rafts may contribute to the dramatic difference in the outcome of signaling in mature and immature B cells.  相似文献   

9.
Binding of Ag by B cells leads to signal transduction downstream of the BCR and to delivery of the internalized Ag-BCR complex to lysosomes where the Ag is processed and presented on MHC class II molecules. T cells that recognize the peptide-MHC complexes provide cognate help to B cells in the form of costimulatory signals and cytokines. Recruitment of T cell help shapes the Ab response by facilitating isotype switching and somatic hypermutation, and promoting the generation of memory cells and long-lived plasma cells. We have used the beige (Bg) mouse, which is deficient in endosome biogenesis, to evaluate the effect of potentially altered Ag presentation in shaping the humoral response. We show that movement of the endocytosed Ag-BCR complex to lysosomes is delayed in Bg B cells and leads to relatively poorer stimulation of Ag-specific T cells. Nevertheless, this does not affect Bg B cell activation or proliferation when competing with wild-type B cells for limiting T cell help in vitro. Interestingly, Bg B cells show more prolonged phosphorylation of signaling intermediates after BCR ligation and proliferate better to low levels of BCR cross-linking. Primary Ab responses are similar in both strains, but memory responses and plasma cell frequencies in bone marrow are higher in Bg mice. Further, Bg B cells mount a higher primary Ab response when competing with wild-type cells in vivo. Thus, the intensity and duration of BCR signaling may play a more important part in shaping B cell responses than early Ag presentation for T cell help.  相似文献   

10.
Proteases, like thrombin, trypsin, cathepsins, or tryptase, can signal to cells by cleaving in a specific manner, a family of G protein-coupled receptors, the protease-activated receptors (PARs). Proteases cleave the extracellular N-terminal domain of PARs to reveal tethered ligand domains that bind to and activate the receptors. Recent evidence has supported the involvement of PARs in inflammation and pain. Activation of PAR(1), PAR(2), and PAR(4) either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Recent studies suggest a crucial role for the different PARs in innate immune response. The role of PARs in the activation of pain pathways appears to be dual. Subinflammatory doses of PAR(2) agonists induce hyperalgesia and allodynia, and PAR(2) activation has been implicated in the generation of inflammatory hyperalgesia. In contrast, subinflammatory doses of PAR(1) or PAR(4) increase nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as analgesic mediators. PARs have to be considered as an additional subclass of G protein-coupled receptors that are active participants to inflammation and pain responses and that could constitute potential novel therapeutic targets.  相似文献   

11.
The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46micromlambda, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.  相似文献   

12.
We examined the effects of triamcinolone acetonide (TA) on T cell independent antigen-induced differentiation of human B cells. Purified human B cells artificially decorated with palmitate-conjugated monoclonal IgA antibody specific for 2,4-dinitrophenyl differentiated polyclonally when challenged with optimum concentrations of dinitrophenyl-derivatized polymerized flagellin. This B cell response was reduced by the synthetic corticosteroid TA at a concentration of 10(-6) M. This suggests that TA can inhibit in vitro B lymphocyte differentiation independent of T cells.  相似文献   

13.
Regulatory CD4(+) T cells are known to develop during the induction of donor-specific peripheral tolerance to transplanted tissues; it is proposed that such tolerance is a consequence of persistent, danger-free stimulation by Ag. To test this hypothesis, male RAG-1(-/-) mice were recolonized with small numbers of monospecific CD4(+) T cells specific for the male H-2E(k)-restricted Ag Dby. After 6 wk in the male environment, the monospecific CD4(+) T cells, having recolonized the host, had become anergic to stimulation in vitro and had acquired a regulatory capacity. CD4(+) T cells in these mice expressed higher levels of CTLA-4 and glucocorticoid-induced TNF-related receptor than naive CD4(+) T cells, but only 3% of the recolonizing cells were CD25(+) and did not express significant foxP3 mRNA. In vivo, these tolerant T cells could censor accumulation of, and IFN-gamma production by, naive T cells, with only a slight inhibition of proliferation. This suppressive effect was not reversed by the addition of fresh bone marrow-derived male dendritic cells. These results suggest that persistent exposure to Ag in conditions that fail to evoke proinflammatory stimuli leads to the development of T cells that are both anergic and regulatory.  相似文献   

14.
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.  相似文献   

15.
In addition to their role as peptide binding proteins, MHC class II proteins can also function as signal transducing molecules. Recent work using B cells expressing genetically engineered truncated MHC class II molecules has suggested that signaling through the cytoplasmic domains of these proteins plays an important role in the generation of signals required for the activation of some T cell hybrids. Treatment of truncated Ia-expressing B cells with cAMP-elevating agents corrects the deficiency in Ag presentation by these cells. We report that the MHC class II-mediated signal appears to act by a mechanism that increases the efficiency of Ag presentation by B cells thereby lowering the amount of specific Ag required for T cell activation. We further show that the induction of the cAMP-induced signal in B cells is inhibited by cycloheximide and cytochalasin A, implicating protein synthesis as well as cytoskeletal rearrangements in Ag presentation to accessory signal- dependent hybrids. In contrast, these agents do not block Ag presentation to a T cell hybrid previously shown not to require the cAMP-induced signal for activation. The signal-dependent T hybrid is additionally dependent on LFA-1-ICAM-1 interaction for activation, whereas the signal-independent hybrid is not. These observations suggest the existence of two types of T cell hybrid with respect to their requirements for activation: those that require only the recognition of MHC class II-peptide complexes without accessory signals, as shown by their ability to respond to purified Ia on planar membranes, and those that, in addition to recognition of MHC II/Ag, require LFA-1-ICAM-1 interaction and the delivery of additional signal(s) induced in the B cell via signal transduction through MHC class II molecules.  相似文献   

16.
《MABS-AUSTIN》2013,5(1):199-211
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.  相似文献   

17.
18.
Endogenous neutrophil formylpeptide receptors do not inhibit adenylylcyclase activation. The ability of a cloned and transfected human formylpeptide receptor to mediate the inhibition of adenylylcyclase was assessed in the human embryonic kidney 293 TSA cell line. Inclusion of 1 microM fMetLeuPhe resulted in a ca. 50% inhibition of isoproterenol-stimulated cAMP in transfected cells. Activation of adenylylcyclase by isoproterenol was inhibited ca. 30% by fMetLeuPhe in membranes prepared from transfected cells but not in membranes prepared from neutrophils. Prior treatment of transfected cells with pertussis toxin abrogated the inhibitory effect of fMetLeuPhe. These data indicate that factors in addition to the primary structure of the formylpeptide receptor govern its transductional activities.  相似文献   

19.
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren''s syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.  相似文献   

20.
Recent evidence suggests that lymphocyte Ag receptor gene rearrangement does not always stop after the expression of the first productively rearranged receptor. Light chain gene rearrangement in B cells, and alpha-chain rearrangement in T cells can continue, which raises the question: how is allelic exclusion maintained, if at all, in the face of continued rearrangement? In this and the accompanying paper, we present comprehensive models of Ag receptor gene rearrangement and the interaction of this process with clonal selection. Our B cell model enables us to reconcile observations on the kappa:lambda ratio and on kappa allele usage, showing that B cell receptor gene rearrangement must be a highly ordered, rather than a random, process. We show that order is exhibited on three levels: a preference for rearranging kappa rather than lambda light chain genes; a preference to make secondary rearrangements on the allele that has already been rearranged, rather than choosing the location of the next rearrangement at random; and a sequentiality of J segment choice within each kappa allele. This order, combined with the stringency of negative selection, is shown to lead to effective allelic exclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号