首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified glutamine synthetase from bovine or ovine brain had no tightly bound Mn2+. By extraction of bovine or ovine brain glutamine synthetase in the presence of L-Met-S-sulfoximine phosphate and ADP in metal ion-free water and 0.1 M KCl, only endogenously bound divalent cations were trapped on the enzyme. Enzyme complexes isolated by immunoprecipitation contained less than 0.05 Mn2+ and 1.5 +/- 0.2 Mg2+ per subunit. Without inactive complex formation, the enzyme immunoprecipitated from extracts contained undetectable Mn2+ (less than 0.01 eq per subunit) and 0.1-2.0 eq of Mg2+ per subunit. Direct binding measurements showed that the purified bovine brain enzyme contained two divalent cations bound at the active site of each subunit. Thus, although either Mg2+ or Mn2+ supports enzyme activity in vitro, Mg2+ rather than Mn2+ appears to be bound to brain glutamine synthetase in vivo.  相似文献   

2.
Experiments were conducted to study the differences in catalytic behavior of various forms of Escherichia coli glutamine synthetase. The enzyme catalyzes the ATP-dependent formation of glutamine from glutamate and ammonia via a gamma-glutamyl phosphate intermediate. The physiologically important metal ion for catalysis is Mg2+; however, Mn2+ supports in vitro activity, though at a reduced level. Additionally, the enzyme is regulated by a covalent adenylylation modification, and the metal ion specificity of the reaction depends on the adenylylation state of the enzyme. The kinetic investigations reported herein demonstrate differences in binding and catalytic behavior of the various forms of glutamine synthetase. Rapid quench kinetic experiments on the unadenylylated enzyme with either Mg2+ or Mn2+ as the activating metal revealed that product release is the rate-limiting step. However, in the case of the adenylylated enzyme, phosphoryl transfer is the rate-limiting step. The internal equilibrium constant for phosphoryl transfer is 2 and 5 for the unadenylylated enzyme with Mg2+ or Mn2+, respectively. For the Mn2(+)-activated adenylylated enzyme the internal equilibrium constant is 0.1, indicating that phosphoryl transfer is less energetically favorable for this form of the enzyme. The factors that make the unadenylylated enzyme most active with Mg2+ are discussed.  相似文献   

3.
Glutamine synthetase in Escherichia coli is regulated by adenylation and deadenylation reactions. The adenylation reaction converts the divalent cation requirement of the enzyme from Mg2+ to Mn2+. Previously, the catalytic action of unadenylated glutamine synthetase was elucidated by monitoring the intrinsic tryptophan fluorescence change accompanying substrate binding. However, due to the lack of changes in the tryptophan fluorescence, a similar study could not be done with the adenylated enzyme. In this study, therefore, an extrinsic fluor is introduced into the adenylated glutamine synthetase by adenylating the enzyme with 2-aza-1,N6-ethenoadenosine triphosphate, a fluorescent analog of ATP. The modified enzyme (aza-epsilon-glutamine synthetase) exhibits catalytic and kinetic properties similar to those of the naturally adenylated enzyme. The results of fluorometric studies on this aza-epsilon-glutamine synthetase indicated that L-glutamate and ATP bind to both Mn2+ and Mg2+ forms of the enzyme in a random order, but only the Mn2+ form is capable of forming a highly reactive enzyme-bound intermediate which is a prerequisite for the reaction with NH4+ to form products. The extrinsic fluorescence changes are also used to determine the binding constants of various substrates and inhibitors of both the biosynthetic and gamma-glutamyl transfer reactions.  相似文献   

4.
The interaction of Mn2+ with the substrate glutamate and several transition state analog inhibitors of glutamine synthetase has been studied. With Mn2+ bound to the tight binding site, the frequency and temperature dependence of the paramagnetic contribution to solvent water proton relaxation rates demonstrate changes in the structure of the metal ion environment induced by substrate or inhibitor binding. The water proton relaxation rate data also show differences in the metal ion environment in the presence of glutamate compared to methionine sulfoximine, a structural analog of an intermediate in the reaction mechanism. Additionally, the distance between the metal ion and the phosphorus atom of an inhibitor, 2-amino-4-phosphonobutyric acid, was estimated (approximately 5 A) using NMR measurements. These data are in accord with our recent hypothesis that the role of the metal ion is to stabilize the tetrahedral adduct formed on the reaction pathway.  相似文献   

5.
Yeast glutamine synthetase can be irreversibly inactivated in the presence of L-methionine sulfoximine, ATP, and a divalent cation Mn2+ or Mg2+. Kinetic studies with partially inactivated enzymes show that inactivation of a given subunit in the octameric glutamine synthetase affects the activities of its neighboring subunit such that the rate of the inactivation as well as the gamma-glutamyltransferase activity of the noninactivated subunits decreases while their biosynthetic activity is enhanced. This outcome of subunit interaction is the same irrespective of whether Mn2+ or Mg2+ is used to fulfill the divalent cation requirement of glutamine synthetase for the inactivation reaction and the gamma-glutamyltransferase reaction. Although only Vmax is affected in the gamma-glutamyltransferase assay, both Km (glutamate) and Vmax are changed in the biosynthetic assay.  相似文献   

6.
Ovine brain glutamine synthetase (GS) utilizes various substituted glutamic acids as substrates. We have used this information to design alpha- and gamma-substituted analogues of phosphinothricin [L-2-amino-4-(hydroxymethylphosphinyl)butanoic acid], a naturally occurring inhibitor of GS. These compounds display competitive inhibition of GS, and a correlation between the inhibitor Ki values and the Km/Vmax values of the analogously substituted glutamates supports the hypothesis that the phosphinothricins participate in transition-state analogue inhibition of GS. At concentrations greater than Ki these inhibitors caused biphasic time-dependent loss of enzyme activity, with initial pseudo-first-order behavior; k'inact parameters were determined for several compounds and were similar to the 2.1 X 10(-2)s-1 value measured for PPT. Dilution after GS inactivation caused a non-first-order recovery of activity. Reactivation kinetics were insensitive to inhibitor and ADP concentrations over wide ranges, although very high postdilution concentrations of inhibitor suppressed reactivation. The burst activity level, beta, as well as the concentration of inhibitor required to suppress reactivation to this level, mu, expressed as a multiple of the Ki value, was characteristic for each compound in the phosphinothricin series. Increasing substitution of the phosphinothricin parent structure caused an increase in Ki values as well as in the inactivation/reactivation parameters. The kinetic behavior of these inhibitors is consistent with a mechanistic scheme involving initial phosphorylation and rapid partial inhibitor dissociation, followed by slow release of remaining bound inhibitor.  相似文献   

7.
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited by buthionine sulfoximine (BSO), most reports indicate that bacterial gamma-GCS is resistant to BSO. We have confirmed the latter finding with Escherichia coli gamma-GCS under standard assay conditions, showing both decreased initial binding affinity for BSO and a reduced rate of BSO-mediated inactivation compared with mammalian isoforms. We also find that substitution of Mn2+ for Mg2+ in assay mixtures increases both the initial binding affinity of BSO and the rate at which BSO causes mechanism-based inactivation. Similarly, the specificity of E. coli gamma-GCS for its amino acid substrates is broadened in the presence of Mn2+, and the rate of reaction for some very poor substrates is improved. These results suggest that divalent metal ions have a role in amino acid binding to E. coli gamma-GCS. Electron paramagnetic resonance (EPR) studies carried out with Mn2+ show that E. coli gamma-GCS binds two divalent metal ions; Kd values for Mn2+ are 1.1 microm and 82 microm, respectively. Binding of l-glutamate or l-BSO to the two Mn2+/gamma-GCS species produces additional upfield and downfield X-band EPR hyperfine lines at 45 G intervals, a result indicating that the two Mn2+ are spin-coupled and thus apparently separated by 5 A or less in the active site. Additional EPR studies in which Cu2+ replaced Mg2+ or Mn2+ suggest that Cu2+ is bound by one N and three O ligands in the gamma-GCS active site. The results are discussed in the context of the catalytic mechanism of gamma-GCS and its relationship to the more fully characterized glutamine synthetase reaction.  相似文献   

8.
Ouabain-binding and phosphorylation of (Na+ mk+)-ATPase (EC 3.6.1.3) of the plasma membranes from kidney were investigated after treatment with N-ethylmaleimide or oligomycin. Either of these inhibitors brought about the following changes: the phosphoenzyme, formed in the presence of Na+, Mg2+ and ATP became essentially insensitive to splitting by K+ but was split by ADP. One mole of this ADP-sensitive phosphoenzyme bound one mole of ouabain but the enzyme-ouabain complex was less stable than in the native enzyme primarily because the rate of its dissociation increased. Ouabain was bound to the ADP-sensitive phosphoenzyme in the presence of Mg2+ alone and addition of inorganic phosphate enhanced both the rate of formation and the steady-state level of the enzyme-ouabain complex. The inhibitors did not affect the properties of this second type of complex. Both in the native enzyme and in the enzyme treated with the two inhibitors inorganic phosphate enhanced ouabain binding by phosphorylating the active center of the enzyme as shown (a) by mapping the labeled peptides from the enzyme after peptic digestion, (b) by inhibition of this phosphorylation with Na+ and (c) by the 1:1 stoichiometric relation between this phosphorylation and the amount of bound ouabain. Unlike the phosphoenzyme, the binding of ouabain remained sensitive to K+ in the enzyme treated with the inhibitors. K+ slowed ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding than to stimulate dephosphorylation. This finding is interpreted as being an indication of separate sites for K+ on the enzyme: a site(s) with high K+-affinity which stimulates dephosphorylation, another site(s) with moderate K+-affinity which inhibits ouabain-binding. Inhibitors may enhance formation of the ADP-sensitive phosphoenzyme by blocking interaction between K+ and the site(s) with high affinity.  相似文献   

9.
In order to label phosphate binding sites, unadenylylated glutamine synthetase from Escherichia coli has been pyridoxylated by reacting the enzyme with pyridoxal 5'-phosphate followed by reduction of the Schiff base with NaBH4. A complete loss in Mg2+-supported activity is associated with the incorporation of 3 eq of pyridoxal-P/subunit of the dodecamer. At this extent of modification, however, the pyridoxylated enzyme exhibits substantial Mn2+-supported activity (with increased Km values for ATP and ADP). The sites of pyridoxylation appear to have equal affinities for pyridoxal-P and to be at the enzyme surface, freely accessible to solvent. At least one of the three covalently bound pyridoxamine 5'-phosphate groups is near the subunit catalytic site and acts as a spectral probe for the interactions of the manganese.enzyme with substrates. A spectral perturbation of covalently attached pyridoxamine-P groups is caused also by specific divalent cations (Mn2+, Mg2+ or Ca2+) binding at the subunit catalytic site (but not while binding to the subunit high affinity, activating Me2+ site). In addition, the feedback inhibitors, AMP, CTP, L-tryptophan, L-alanine, and carbamyl phosphate, perturb protein-bound pyridoxamine-P groups. The spectral perturbations produced by substrate and inhibitor binding are pH-dependent and different in magnitude and maximum wavelength. Adenylylation sites are not major sites of pyridoxylation.  相似文献   

10.
The interactions between ADP, Mg2+, and azide that result in the inhibition of the chloroplast F1 ATPase (CF1) have been explored further. The binding of the inhibitory Mg2+ with low Kd is shown to occur only when tightly bound ADP is present at a catalytic site. Either the tightly bound ADP forms part of the Mg(2+)-binding site or it induces conformational changes creating the high-affinity site for inhibitory Mg2+. Kinetic studies show that CF1 forms two catalytically inactive complexes with Mg2+. The first complex results from Mg2+ binding with a Kd for Mg2+ dissociation of about 10-15 microM, followed by a slow conversion to a complex with a Kd of about 4 microM. The rate-limiting step of the CF1 inactivation by Mg2+ is the initial Mg2+ binding. When medium Mg2+ is chelated with EDTA, the two complexes dissociate with half-times of about 1 and 7 min, respectively. Azide enhances the extent of Mg(2+)-dependent inactivation by increasing the affinity of the enzyme for Mg2+ 3-4 times and prevents the reactivation of both complexes of CF1 with ADP and Mg2+. This results from decreasing the rate of Mg2+ release; neither the rate of Mg2+ binding to CF1 nor the rate of isomerization of the first inactive complex to the more stable form is affected by azide. This suggests that the tight-binding site for the inhibitory azide requires prior binding of both ADP and Mg2+.  相似文献   

11.
The covalently attached AMP moiety of adenylylated glutamine synthetase from Escherichia coli has been replaced by its fluorescent analog, 2-aza-1,N6-etheno-AMP (aza-epsilon-AMP). The modified glutamine synthetase (aza-epsilon-GS) exhibits divalent cation requirement (Mn2+, rather than Mg2+), pH profile, Vmax, and Km similar to those of naturally adenylylated glutamine synthetase. Whereas naturally adenylylated glutamine synthetase exhibits only negligible fluorescence changes upon the binding of substrates, aza-epsilon-GS exhibits large fluorescence changes. The fluorescence changes have been used by means of a stopped flow technique to reveal the involvement of five fluorometrically distinct intermediates in the catalytic cycle for the biosynthesis of glutamine catalyzed by the adenylylated glutamine synthetase. The mechanism is very similar to that previously established for the unadenylylated enzyme, using intrinsic tryptophan fluorescence. Substrates bind via a rapid equilibrium random mechanism, but the reaction proceeds in a stepwise manner. The formation of an enzyme-bound intermediate (probably gamma-glutamyl phosphate + ADP) from ATP and L-glutamate is the rate-limiting step, with the subsequent reaction of the enzyme-bound intermediate occurring very rapidly. The success in elucidating this complex mechanism is due largely to the vastly different amplitudes of the fluorescence changes at the two excitation maxima (300 nm and 360 nm) of the aza-epsilon-AMP moiety which accompany the formation of the various intermediates.  相似文献   

12.
o-Phosphotyrosyl glutamine synthetase (P-GS) was isolated from highly adenylated glutamine synthetase (AMP-GS) purified from Mycobacterium phlei, by treatment with micrococcal nuclease. The physical characteristics of P-GS were quite similar to those of AMP-GS except for the UV-absorption spectrum. In either Mg2+- or Mn2+-dependent biosynthetic reactions, the kinetic properties, such as optimum pH, Vmax, and apparent Km for each of three substrates of P-GS, were found to be in good agreement with those of AMP-GS. The biosynthetic activity of P-GS was markedly increased after treatment with alkaline phosphatase similarly as in the deadenylylation of AMP-GS by snake venom phosphodiesterase treatment. These results revealed that repression of glutamine synthetase activity simply requires the phosphorylation of the tyrosyl residue, without recourse to adenylylation.  相似文献   

13.
Glutamine synthetase of plants is the physiological target of tabtoxinine-beta-lactam, a toxin produced by several disease-causing pathovars of Pseudomonas syringae. This toxin, a unique amino acid, is an active site-directed, irreversible inhibitor of glutamine synthetase from pea. ATP is required for inactivation. Neither ADP, AMP, nor adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) supports inactivation. Adenyl-5'-yl imidophosphate (AMP-PNP) is slowly hydrolyzed by glutamine synthetase to produce adenyl-5'-yl phosphoramidate (AMP-PN) and inorganic phosphate as identified by 31P NMR spectroscopic analysis. AMP-PNP also supports a slow inactivation of glutamine synthetase by tabtoxinine-beta-lactam. These data are consistent with gamma-phosphate transfer being involved in the inactivation. Completely inactivated glutamine synthetase has 0.9 mumol of toxin bound/mumol of subunit. One mumol of ATP is bound per mumol of subunit of glutamine synthetase in the absence of either the toxin or another active site-directed inhibitor, methionine sulfoximine; whereas, a 2nd mumol of either [alpha- or gamma-32P]ATP is bound per mumol of subunit when glutamine synthetase is incubated in the presence of either toxin or methionine sulfoximine until all enzyme activity is lost. These data suggest that the gamma-phosphate hydrolyzed from ATP during inactivation remains with the enzyme-inhibitor complex, as well as the ADP. The open chain form, tabtoxinine, was neither a reversible nor an irreversible inhibitor of glutamine synthetase, suggesting that the beta-lactam ring is necessary for inhibition. The inactivation of glutamine synthetase with tabtoxinine-beta-lactam is pseudo-first-order when done in buffer containing 15% (v/v) ethylene glycol. The rate constant for this reaction is 3 X 10(-2) S-1, and the Ki for the toxin is 1 mM. Removal of the ethylene glycol from the buffer allows the reaction to proceed in a non-first-order manner with the apparent rate constant decreasing with time. As the enzyme is inactivated in these conditions, the binding affinity for the toxin appears to decrease, while the Km observed for glutamate does not change.  相似文献   

14.
Markham GD  Reczkowski RS 《Biochemistry》2004,43(12):3415-3425
S-Adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a two-step reaction in which tripolyphosphate (PPPi) is a tightly bound intermediate. Diimidotriphosphate (O(3)P-NH-PO(2)-NH-PO(3); PNPNP), a non-hydrolyzable analogue of PPPi, is the most potent known inhibitor of AdoMet synthetase with a K(i) of 2 nM. The structural basis for the slow, tight-binding inhibition by PNPNP has been investigated by spectroscopic methods. UV difference spectra reveal environmental alterations of aromatic protein residues upon PNPNP binding to form the enzyme.2Mg(2+).PNPNP complex, and more extensive changes upon formation of the enzyme.2Mg(2+).PNPNP.AdoMet complex. Stopped-flow kinetic studies of complex formation revealed that two slow isomerizations follow PNPNP binding in the presence of AdoMet, in contrast to the lower affinity, rapid-equilibrium binding in the absence of AdoMet. (31)P NMR spectra of enzyme complexes with PNPNP revealed electronic perturbations of each phosphorus atom by distinct upfield chemical shifts for each of the three phosphoryl groups in the enzyme.2Mg(2+).PNPNP complex, and further upfield shifts of at least 2 resonances in the complex with AdoMet. Comparison of the chemical shifts for the enzyme-bound PNPNP with the enzyme complexes containing either the product analogue O(3)P-NH-PO(3) or O(3)P-O-PO(2)-NH-PO(3) indicates that the shifts on binding are largest at the binding sites corresponding to those for the alpha and gamma phosphoryl groups of the nucleotide (-3.1 to -4.1 ppm), while the resonance at the beta phosphoryl group position shifts by -2.1 ppm. EPR spectra of Mn(2+) complexes demonstrate spin coupling between the two Mn(2+) in both enzyme.2Mn(2+).PNPNP and enzyme.2Mn(2+).PNPNP.AdoMet, indicating that the metal ions have comparable distances in both cases. The combined results indicate that formation of the highest affinity complex is associated with protein side chain rearrangements and increased electron density at the ligand phosphorus atoms, likely due to ionization of an -NH- group of the inhibitor. The energetic feasibility of ionization of a -NH- group when two Mg(2+) ions are bound to O(3)P-NH-PO(3) is supported by density functional theoretical calculations on model chelates. This mode of interaction is uniquely available to compounds with P-NH-P linkages and may be possible with other proteins in which multiple cations coordinate a polyphosphate chain.  相似文献   

15.
Manganese ion, like Mg2+, has been found to produce high biosynthetic activity of the unadenylylated form of glutamine synthetase obtained from Mycobacterium smegmatis, and the activity with each of these cations was decreased by the adenylylation of the enzyme. Further, the gamma-glutamyltransferase reaction was catalyzed in the presence of either Mn2+, Mg2+, or Co2+ with both unadenylylated and adenylylated enzyme; however, each of these divalent cation-dependent activities was also decreased by one order of magnitude by adenylylation of the enzyme. From studies of UV-difference spectra, it was found that the ability of M. smegmatis glutamine synthetase to assume a number of distinctly different configurations was the result of the varied response of the enzyme to different cations. When either Mn2+, Mg2+, Ca2+, or Co2+ was added to the relaxed (divalent cation-free) enzyme at saturated concentration, each produced a similar UV-difference spectrum of the enzyme, indicating that the conformational states induced by these cations are similar with respect to the polarity of the microenvironment surrounding the tyrosyl and tryptophanyl groups of the enzyme. The binding of Cd2+, Ni2+, or Zn2+ to the relaxed enzyme each produced a different shift in the UV-absorption spectrum of the enzyme, indicating different conformational states. The kinetics of the spectral change that occurred upon addition of Mn2+, Mg2+, or Co2+ to a relaxed enzyme preparation were determined. The first-order rate constants for the decrease in relaxed enzyme with Mn2+ and Mg2+ were 0.604 min-1 and 0.399 min-1, respectively, at 25 degrees C, pH 7.4. The spectral change with Co2+ was completed within the time of mixing (less than 4 s). For these three metal ions, the total spectral change as well as the time course of the change were the same for both the unadenylylated enzyme and the partially adenylylated enzyme. However, Hill coefficients obtained from spectrophotometric titration data for both Mn2+ and Mg2+ were decreased with adenylylated enzyme to compared with unadenylylated enzyme. These results suggest that covalently bound AMP on each subunit may be involved in subunit interactions within the dodecamer. Circular dichroism measurements also indicated that the various structural changes of the M. smegmatis glutamine synthetase were produced by the binding of the divalent cations.  相似文献   

16.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

17.
Glutamine synthetase purified from Bacillus cereus IFO 3131 was modified by iodoacetamide and the ATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). Only Mg2+-dependent activity was inactivated by iodoacetamide, whereas only Mn2+-dependent activity was inactivated by FSBA. When iodoacetamide-treated enzyme was reacted with FSBA, Mn2+-dependent activity was also inactivated. Mg2+ plus Mn2+-dependent activity was inactivated in any case. The results suggested that the binding sites of Mn2+ and Mg2+ are separate from each other in the active site of B. cereus glutamine synthetase and that bindings of Mg2+ and Mn2+ to each site are required for normal activity in vivo.  相似文献   

18.
The optical isomers of 3-amino-1-chloro-2-pentanone, which are the alpha-chloroketone analogs of L- and D-alpha-aminobutyrate, were synthesized and found to be highly potent irreversible inactivators of gamma-glutamylcysteine synthetase. These chloroketones are 20 to 30 times more active than L-2-amino-4-oxo-5-chlorpentanoate. L- and D-Glutamate, in the presence of Mg2+ or Mn2+, protect the enzyme against inactivation. The enzyme is almost completely inhibited by cystamine under conditions in which 0.5 mol of this compound is bound/mol of enzyme. Treatment of the enzyme with cystamne, which produces inhibition that is reversible by dithiothreitol, prevents the interaction of the new chloroketones, L-2-amino-4-oxo-5-chloropentanoate and methionine sulfoximine with the enzyme. The findings suggest that a sulfhydryl group at the active site interacts with the chloroketones and with cystamine and that the chloroketone inhibitors and cystamine bind to the enzyme as glutamine analogs. The data also suggest that a gamma-glutamyl-S-enzyme intermediate may be formed in the reaction catalyzed by this enzyme.  相似文献   

19.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.  相似文献   

20.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号