首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemical modifications of rabbit liver carbonyl reductase (RLCR) with phenylglyoxal (PGO) and 2,3,4-trinitrobenzenesulfonate sodium (TNBS), which are respective chemical modifiers of arginine and lysine residues, were examined. RLCR was rapidly inactivated by these modifiers. Kinetic data for the inactivation demonstrated that each one of arginine and lysine residues is essential for catalytic activity of the enzyme. Furthermore, based on the protective effects of NADP+, NAD+ and their constituents against the inactivation of RLCR by PGO and TNBS, we propose the possibility that the functional arginine and lysine residues are located in the coenzyme-binding domain of RLCR and interact with the 2'-phosphate group of NADPH.  相似文献   

2.
Aldose reductase and aldehyde reductases have been purified to homogeneity from human kidney and have molecular weights of 32,000 and 40,000 and isoelectric pH 5.8 and 5.3, respectively. Aldose reductase, beside catalyzing the reduction of various aldehydes, reduces aldo-sugars, whereas aldehyde reductase, does not reduce aldo-sugars. Aldose reductase activity is expressed with either NADH or NADPH as cofactor, whereas aldehyde reductase utilizes only NADPH. Both enzymes are inhibited to varying degrees by aldose reductase inhibitors. Antibodies against bovine lens aldose reductase precipitated aldose reductase but not aldehyde reductase. The sequence of addition of the substrates to aldehyde reductase is ordered and to aldose reductase is random, whereas for both the enzymes the release of product is ordered with NADP released last.  相似文献   

3.
Aldose reductase (EC 1.1.1.21) and aldehyde reductase II (L-hexonate dehydrogenase, EC 1.1.1.2) have been purified to homogeneity from human erythrocytes by using ion-exchange chromatography, chromatofocusing, affinity chromatography, and Sephadex gel filtration. Both enzymes are monomeric, Mr 32,500, by the criteria of the Sephadex gel filtration and polyacrylamide slab gel electrophoresis under denaturing conditions. The isoelectric pH's for aldose reductase and aldehyde reductase II were determined to be 5.47 and 5.06, respectively. Substrate specificity studies showed that aldose reductase, besides catalyzing the reduction of various aldehydes such as propionaldehyde, pyridine-3-aldehyde and glyceraldehyde, utilizes aldo-sugars such as glucose and galactose. Aldehyde reductase II, however, did not use aldo-sugars as substrate. Aldose reductase activity is expressed with either NADH or NADPH as cofactors, whereas aldehyde reductase II can utilize only NADPH. The pH optima for aldose reductase and aldehyde reductase II are 6.2 and 7.0, respectively. Both enzymes are susceptible to the inhibition by p-hydroxymercuribenzoate and N-ethylmaleimide. They are also inhibited to varying degrees by aldose reductase inhibitors such as sorbinil, alrestatin, quercetrin, tetramethylene glutaric acid, and sodium phenobarbital. The presence of 0.4 M lithium sulfate in the assay mixture is essential for the full expression of aldose reductase activity whereas it completely inhibits aldehyde reductase II. Amino acid compositions and immunological studies further show that erythrocyte aldose reductase is similar to human and bovine lens aldose reductase, and that aldehyde reductase II is similar to human liver and brain aldehyde reductase II.  相似文献   

4.
Characterization of aldose reductase and aldehyde reductase from rat testis   总被引:4,自引:0,他引:4  
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21) and aldehyde reductase (alcohol:NADP+ oxidoreductase, EC 1.1.1.2) were purified to a homogeneity from rat testis. The molecular weights of aldose reductase and aldehyde reductase were estimated to be 38,000 and 41,000 by SDS-polyacrylamide gel electrophoresis, and the pI values of these enzymes were found to be 5.3 and 6.1 by chromatofocusing, respectively. Aldose reductase had activity for aldo-sugars such as xylose, glucose and galactose, whereas aldehyde reductase was virtually inactive for these aldo-sugars. The Km values of aldose reductase for aldo-sugars were relatively high. When a correction was made for the fraction of aldo-sugar present as the aldehyde form, which is the real substrate of the enzyme, the Km values were much lower. Aldose reductase utilized both NADPH and NADH as coenzyme, whereas aldehyde reductase utilized only NADPH. Aldose reductase was activated significantly by sulfate ion, while aldehyde reductase was little affected. Both enzymes were inhibited strongly by the known aldose reductase inhibitors. However, aldehyde reductase was in general less susceptible to these inhibitors when compared to aldose reductase. Both aldose reductase and aldehyde reductase treated with pyridoxal 5-phosphate have lost the susceptibility to aldose reductase inhibitor, suggesting that in these two enzymes aldose reductase inhibitor interacts with a lysine residue.  相似文献   

5.
Circular dichroism and fluorescence spectra of aldose reductase (E.C.1.1.1.21) and aldehyde reductase II (E.C.1.1.1.19) purified to homogeneity from human placenta have been studied. The alpha helical content of aldose reductase and aldehyde reductase II was 51% and 56%, respectively, whereas no beta helical structure was found in either case. In the case of aldose reductase, the secondary structure was unaffected at alkaline pH (9.5), whereas a drastic alteration in the structure was observed at 58 degrees C. The secondary structure of aldehyde reductase II, on the other hand, remained unaffected at higher pH and temperature.  相似文献   

6.
The apoenzyme of diol dehydrase was inactivated by two arginine-specific reagents, 2,3-butanedione and phenylglyoxal, in borate buffer. In both cases, the inactivation followed pseudo-first-order kinetics. Kinetic data show that the incorporation of a single reagent molecule per active site of the enzyme is necessary for the complete inactivation. The modification with 2,3-butanedione was reversed by dilution of the reagent and borate concentrations (65% activity recovered). 1,2-Propanediol (substrate) partially protected the enzyme against inactivation. The holoenzyme was almost insensitive to 2,3-butanedione and phenylglyoxal, indicating that the essential arginine residue is prevented from the attack of these reagents either by direct blockage with the bound coenzyme or by an indirect conformational change caused by coenzyme binding. The inactivation of diol dehydrase by 2,3-butanedione did not result in dissociation of the enzyme into subunits. From these results, we concluded that the essential arginine residue is located at or in close proximity to the active site of diol dehydrase.  相似文献   

7.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   

8.
1. Aldose reductase and aldehyde reductase were purified to homogeneity from human testis. 2. The molecular weight of aldose reductase and aldehyde reductase were estimated to be 36,000 and 38,000 by SDS-PAGE, and the pI values of these enzymes were found to be 5.9 and 5.1 by chromatofocusing, respectively. 3. Aldose reductase had activity for aldo-sugars, whereas aldehyde reductase was virtually inactive for aldo-sugars. The Km values of aldose reductase for D-glucose, D-galactose and D-xylose were 57, 49 and 6.2 mM, respectively. Aldose reductase utilized both NADPH and NADH as coenzymes, whereas aldehyde reductase only NADPH. 4. Sulfate ion caused 3-fold activation of aldose reductase, but little for that of aldehyde reductase. 5. Sodium valproate inhibited significantly aldehyde reductase, but not aldose reductase. Aldose reductase was inhibited strongly by aldose reductase inhibitors being in clinical trials at concentrations of the order of 10(-7)-10(-9) M. Aldehyde reductase was also inhibited by these inhibitors, but its susceptibility was less than aldose reductase. 6. Reaction of aldose reductase with pyridoxal 5'-phosphate (PLP) resulted ca 2.5-fold activation, but aldehyde reductase did not cause the activation. PLP-treated aldose reductase has lost the susceptibility to aldose reductase inhibitor.  相似文献   

9.
Treatment of crystalline tobacco ribulosebisphosphate carboxylase (EC 4.1.1.39) with the arginine-selective α-dicarbonyl, 2,3-butanedione, results in a time- and concentration-dependent loss of activity. Inactivation is markedly enhanced by borate buffer and alkaline pH and is partially reversed upon removal of excess reagent and borate by gel filtration. Of the various ligands examined, only the phosphorylated substrate, ribulosebisphosphate, protects against inactivation. These results suggest an essential role for arginyl residues in the enzymic mechanism of ribulosebisphosphate carboxylase, probably as binding sites for the negatively charged phosphate groups of the non-gaseous substrate.  相似文献   

10.
Kinetics of carbonyl reductase from human brain.   总被引:3,自引:1,他引:2       下载免费PDF全文
Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. Deuterium isotope effects on the apparent V/Km values decreased with increasing concentrations of menadione but were independent of the NADPH concentration. The results, together with data from product inhibition studies, are consistent with carbonyl reductase obeying a compulsory-order mechanism, NADPH binding first and NADP+ leaving last. No significant differences in the kinetic properties of three molecular forms of carbonyl reductase were detectable.  相似文献   

11.
ATP-dependent deoxyribonuclease from Micrococcus luteus was purified to near homogeneity by a procedure involving gentle cell lysis, ammonium sulfate fractionation, TEAE-cellulose chromatography, Sephadex G-150 gel filtration and DNA-cellulose chromatography. Treatment of the enzyme with 2,3-butanedione, which binds specifically to arginyl residues, caused rapid loss of enzyme activities and the effect was enhanced by borate ion. The reaction obeyed first order kinetics with respect to the butanedione concentration, indicating that at least one functional arginyl residue is involved in the inactivation reaction. The enzyme was protected from inactivation by the presence of a low concentration of ATP, but not of ADP, AMP or adenosine. These results indicate that ATP-dependent deoxyribonuclease of Micrococcus luteus has functional arginyl residue(s) at an ATP-binding site.  相似文献   

12.
Enolase from white muscle of carp (Cyprinus carpio) is inactivated by 2,3-butanedione in borate buffer. Magnesium ions as well as substrate--2-phosphoglycerate markedly altered the rate and extent of inactivation. The partially inactivated enzyme shows unaltered Km but decreased Vmax after 10 min incubation with butanedione, however after 60 min incubation the Km value increased 2.5 fold.  相似文献   

13.
14.
Fatty acid synthase catalyzes the reduction of one of the carbonyl groups in phenylglyoxal and 2,3-butanedione using NADPH as the reductant. Selective inactivation of the enoyl reductase, one of the two reductase domains that could catalyze this reduction, did not affect the carbonyl reduction showing that the ketoreductase domain catalyzed the reaction. The apparent Km for the two arginine-specific reagents were lower than that for 3-acetoacetyl-N-acetyl cysteamine, the commonly used model substrate for the ketoreductase activity of the synthase.  相似文献   

15.
  • 1.1. Aldose reductase, aldehyde reductase and high-Km, aldose reductase were purified from the inner medulla of dog kidney.
  • 2.2. Compared with aldose reductase, high-Km aldose reductase had a lower isoelectric point, a lower activity for aldo-sugars and a lower sensitivity for aldose reductase inhibitors, and it was not activated by sulfate ions. Both reductases had the same molecular weight (38,500) and immunochemical properties.
  • 3.3. High-Km aldose reductase was easily converted into an aldose reductase-like enzyme, namely a generated reductase upon incubation in neutral buffer solution.
  • 4.4. The generated reductase was identical with aldose reductase with respect to the isoelectric point, substrate specificity, activation by sulfate ions and IC50 values for aldose reductase inhibitors. The generated reductase revealed immunochemical identity with aldose reductase as well as high-Km aldose reductase.
  相似文献   

16.
Abstract: Human brain aldose reductase and hexonate dehydrogenase are inhibited by alrestatin (AY 22,284) and sorbinil (CP 45,634). Inhibition by alrestatin is noncompetitive for both enzymes, and slightly stronger for hexonate dehydrogenase ( K I values 52-250 μ M ) than for aldose reductase ( K I values 170-320 μ M ). Sorbinil inhibits hexonate dehydrogenase far more potently than aldose reductase, K I values being 5 μ M for hexonate dehydrogenase and 150 μ M for aldose reductase. The inhibition of hexonate dehydrogenase by sorbinil is noncompetitive with respect to both aldehyde and NADPH substrates, and is thus kinetically similar to the inhibition by alrestatin. However, sorbinil inhibition of aldose reductase is uncompetitive with respect to glyceraldehyde and noncompetitive with NADPH as the varied substrate. Inhibition of human brain aldose reductase by these two inhibitors is much less potent than that reported for the enzyme from other sources.  相似文献   

17.
Bovine kidney aldose reductase (ALR2) displays substrate inhibition by aldehyde substrates that is uncompetitive versus NADPH when allowance is made for nonenzymic reaction of the aldehyde with the adenine moiety of NADPH. A time-dependent increase in substrate inhibition observed in product versus time plots for reduction of short-chain aldoses containing an enolizable alpha-proton, but not for p-nitrobenzaldehyde, is shown to be consistent with a model in which rapidly reversible inhibition due to formation of the dead-end E-NADP-glycolaldehyde complex is combined with the formation at the enzyme active site of a tightly-bound covalent NADP-glycolaldehyde adduct. Quantitative analysis of reaction time courses for ALR2-catalyzed reduction of glycolaldehyde using NADPH or the 3-acetylpyridine analogue, (AP)ADPH, yields values of the forward and reverse rate constants for ALR2-mediated adduct formation that agree with the values determined in the absence of glycolaldehyde turnover. Substrate inhibition is only partial, indicating that reaction can occur via an alternate pathway at high [glycolaldehyde]. Kinetic evidence for a slow isomerization of the E-NADP complex at pH 8.0 is used to explain the similar V/Et values observed for glycolaldehyde reduction at pH 7.0 using NADPH, (AP)ADPH, and the hypoxanthine analogue N(Hx)DPH. The practical implications of these results for kinetics studies of aldose reductase are discussed.  相似文献   

18.
The neuromodulator gamma-hydroxybutyrate is synthesized in vivo from gamma-aminobutyrate by transamination to succinic semialdehyde and subsequent reduction of the aldehyde group. In human brain, succinic semialdehyde reductase is thought to be responsible for the conversion of succinic semialdehyde to gamma-hydroxybutyrate. In the present work, we cloned the cDNA coding for succinic semialdehyde reductase and expressed it in Escherichia coli. A data bank search indicated that the enzyme is identical with aflatoxin B1-aldehyde reductase, an enzyme implicated in the detoxification of xenobiotic carbonyl compounds. Structurally, succinic semialdehyde reductase thus belongs to the aldo-keto reductase superfamily. The recombinant protein was indistinguishable from native human brain succinic semialdehyde reductase by SDS/PAGE. In addition to succinic semialdehyde, it readily catalyzed the reduction 9,10-phenanthrene quinone, phenylglyoxal and 4-nitrobenzaldehyde, typical substrates of aflatoxin B1 aldehyde reductase. The results suggest multiple functions of succinic semialdehyde reductase/aflatoxin B1 aldehyde reductase in the biosynthesis of gamma-hydroxybutyrate and the detoxification of xenobiotic carbonyl compounds, respectively.  相似文献   

19.
THe characteristic feature of the crystal structure of erabutoxin b, a short neurotoxin from Laticauda semifasciata, and alpha-cobratoxin, a long neurotoxin from Naja naja siamensis, is the presence of a triple-stranded antiparallel pleated beta-sheet structure formed by the central and the third peptide loops. In the present study, we have studied the assignment of slowly exchangeable amide protons of Laticauda semifasciata III from L. semifasciata, using nuclear Overhauser effects (NOE) and spin-decoupling methods. The results show that nearly all of the slowly exchangeable amide protons are to be assigned to the back-bone amide protons, involved in the triple-stranded antiparallel pleated beta-sheet structure, indicating that this sheet is stable in 2H2O solution. In contrast, the amide protons in short neurotoxins are readily exchangeable under the same experimental condition, suggesting that long neurotoxins have a more rigid sheet structure than short ones. This rigidity may come from the hydrophobic and hydrogen bond interaction between the central loop and the tail, which is not present in short neurotoxins. Since the functionally important residues are located on this beta-sheet, the different kinetic properties of the neurotoxins are well correlated with the difference in the rigidity of the beta-sheet.  相似文献   

20.
Human erythrocyte pyruvate kinase was found to be irreversibly inactivated by butanedione in the dark. The second-order rate constants for inactivation at pH 8.0 and 25 degrees C were 2.14 and 2.74 M-1 min-1 in the absence and presence of 50 mM borate, respectively. The pH profile of the inactivation indicated the involvement of a residue with an apparent pK alpha of 8.1-8.3. ADP and phosphoenolpyruvate acted as partial inhibitors of the inactivation process. Certain details of the inactivation, spectral studies, and fluorometric determinations gave evidence for arginine as the only target residue. A total of 23 +/- 3 residues per subunit were modified within the period required for inactivation. In the same period the presence of 4 mM ADP reduced the extent of inactivation by 70% and the number of modified residues to 18 +/- 4. The number of the arginine residues protected by ADP from butanedione modification was 5.0 +/- 1.3 per subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号