首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

4.
Misato of Drosophila melanogaster and Saccharomyces cerevisiae DML1 are conserved proteins having a homologous region with a part of the GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. We characterized human Misato sharing homology with Misato of D. melanogaster and S. cerevisiae DML1. Tissue distribution of Misato exhibited ubiquitous distribution. Subcellular localization of the protein studied using anti-Misato antibody suggested that it is localized to the mitochondria. Further experiments of fractionating mitochondria revealed that Misato was localized to the outer membrane. The transfection of Misato siRNA led to growth deficiencies compared with control siRNA transfected HeLa cells, and the Misato-depleted HeLa cells showed apoptotic nuclear fragmentation resulting in cell death. After silencing of Misato, the filamentous mitochondrial network disappeared and fragmented mitochondria were observed, indicating human Misato has a role in mitochondrial fusion. To examine the effects of overexpression, COS-7 cells were transfected with cDNA encoding EGFP-Misato. Its overexpression resulted in the formation of perinuclear aggregations of mitochondria in these cells. The Misato-overexpressing cells showed low viability and had no nuclei or a small and structurally unusual ones. These results indicated that human Misato has a role(s) in mitochondrial distribution and morphology and that its unregulated expression leads to cell death.  相似文献   

5.
6.
Spergen-1, a recently identified molecule specifically expressed in haploid spermatids in testis, is a small protein of 154 amino acids with a mitochondria-targeting signal at the N terminus. To examine the localization of spergen-1 protein in germ cells, we performed immunocytochemistry with the anti-spergen-1 antibody on frozen sections of rat testis and purified spermatozoa. Immunolabeling for spergen-1 was detected in mitochondria of elongating spermatids and of the middle pieces of matured spermatozoa. Immunoelectron microscopy revealed that spergen-1 was localized to the surface of mitochondria in the middle piece of spermatozoa. To investigate the properties of spergen-1, COS-7 cells were transfected with vectors encoding various spergen-1 mutants. The transfection experiments showed that spergen-1 expressed in the cells tended to agglutinate mitochondria and assemble them into aggregations and that the C-terminal region of spergen-1 as well as the N-terminal mitochondrial targeting signal was requisite for induction of mitochondrial aggregation. These results suggest that spergen-1, a mitochondria-associated molecule in spermatozoa, has a property to induce mitochondrial aggregation at least in cultured cells. We hypothesize that spergen-1 might function as an adhesive molecule to assemble mitochondria into the mitochondrial sheath around the outer dense fibers during spermiogenesis.  相似文献   

7.
8.
Oxidative damage to mitochondrial DNA has been implicated in human degenerative diseases and aging. Although removal of oxidative lesions from mitochondrial DNA occurs, the responsible DNA repair enzymes are poorly understood. By expressing the epitope-tagged proteins in COS-7 cells, we examined subcellular localizations of gene products of human DNA glycosylases: hOGG1, hMYH and hNTH1. A gene encoding for hOGG1 which excises 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA generates four isoforms by alternative splicing (types 1a, 1b, 1c and 2). Three tagged isoforms (types 1b, 1c and 2) were localized in the mitochondria. Type 1a protein, which exclusively contains a putative nuclear localization signal, was sorted to the nucleus and lesser amount to the mitochondria. hMYH, a human homolog gene product of Escherichia coli mutY was mainly transported into the mitochondria. hNTH1 protein excising several pyrimidine lesions was transported into both the nucleus and mitochondria. In contrast to the three DNA glycosylases, translocation of the human major AP endonuclease (hAPE) into the mitochondria was hardly observed in COS-7 cells. These results suggest that the previously observed removal of oxidative base lesions in mitochondrial DNA is initiated by the above DNA glycosylases.  相似文献   

9.
We previously showed that mRNA encoding TARP (T cell receptor gamma chain alternate reading frame protein) is exclusively expressed in the prostate in males and is up-regulated by androgen in LNCaP cells, an androgen-sensitive prostate cancer cell line. We have now developed an anti-TARP monoclonal antibody named TP1, and show that TARP protein is up-regulated by androgen in both LNCaP and MDA-PCa-2b cells. We used TP1 to determine the subcellular localization of TARP by Western blotting following subcellular fractionation and immunocytochemistry. Both methods showed that TARP is localized in the mitochondria of LNCaP cells, MDA-PCa-2b cells, and PC-3 cells transfected with a TARP-expressing plasmid. We also transfected a plasmid encoding TARP fused to green fluorescent protein into LNCaP, MDA-Pca-2b, and PC-3 cells and confirmed its specific mitochondrial localization in living cells. Fractionation of mitochondria shows that TARP is located in the outer mitochondrial membrane. Immunohistochemistry using a human prostate cancer sample showed that TP1 reacted in a dot-like cytoplasmic pattern consistent with the presence of TARP in mitochondria. These data demonstrate that TARP is the first prostate-specific protein localizing in mitochondria and indicate that TARP, an androgen-regulated protein, may act on mitochondria to carry out its biological functions.  相似文献   

10.
11.
12.
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunoflourescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.  相似文献   

13.
14.
Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with mitochondria in vivo. This supports earlier cell fractionation and microarray-based studies that proposed mMP association with the mitochondrial fraction. Interestingly, a number of mMPs showed a dependency on the mitochondrial Puf3 RNA-binding protein, as well as nonessential proteins of the translocase of the outer membrane (TOM) complex import machinery, for normal colocalization with mitochondria. We examined the specific determinants of ATP2 and OXA1 mRNA localization and found a mutual dependency on the 3' UTR, Puf3, Tom7, and Tom70, but not Tom20, for localization. Tom6 may facilitate the localization of specific mRNAs as OXA1, but not ATP2, mRNA was mislocalized in tom6Δ cells. Interestingly, a substantial fraction of OXA1 and ATP2 RNA granules colocalized with the endoplasmic reticulum (ER) and a deletion in MDM10, which mediates mitochondria-ER tethering, resulted in a significant loss of OXA1 mRNA localization with ER. Finally, neither ATP2 nor OXA1 mRNA targeting was affected by a block in translation initiation, indicating that translation may not be essential for mRNA anchoring. Thus, endogenously expressed mRNAs are targeted to the mitochondria in vivo, and multiple factors contribute to mMP localization.  相似文献   

15.
Carnitine is a zwitterion essential for the beta-oxidation of fatty acids. We report novel localization of the organic cation/carnitine transporter, OCTN1, to mitochondria. We made GFP- and RFP-human OCTN1 cDNA constructs and showed expression of hOCTN1 in several transfected mammalian cell lines. Immunostaining of GFP-hOCTN1 transfected cells with different intracellular markers and confocal fluorescent microscopy demonstrated mitochondrial expression of OCTN1. There was striking co-localization of an RFP-hOCTN1 fusion protein and a mitochondrial-GFP marker construct in transfected MEF-3T3 and no co-localization of GFP-hOCTN1 in transfected human skin fibroblasts with other intracellular markers. L-[(3)H]Carnitine uptake in freshly isolated mitochondria of GFP-hOCTN1 transfected HepG2 demonstrated a K(m) of 422 microM and Western blot with an anti-GFP antibody identified the expected GFP-hOCTN1 fusion protein (90 kDa). We showed endogenous expression of native OCTN1 in HepG2 mitochondria with anti-GST-hOCTN1 antibody. Further, we definitively confirmed intact L-[(3)H]carnitine uptake (K(m) 1324 microM), solely attributable to OCTN1, in isolated mitochondria of mutant human skin fibroblasts having <1% of carnitine acylcarnitine translocase activity (alternate mitochondrial carnitine transporter). This mitochondrial localization was confirmed by TEM of murine heart incubated with highly specific rabbit anti-GST-hOCTN1 antibody and immunogold labeled goat anti-rabbit antibody. This suggests an important yet different role for OCTN1 from other OCTN family members in intracellular carnitine homeostasis.  相似文献   

16.
Using full length cDNA introduced into COS-7 cells, two species of P-450 with entirely different physiological functions have been expressed in enzymatically active form. One is P-450d, which is known to reside in the microsomes of rat hepatocytes where it acts as a drug-metabolizing enzyme; the other is P-450(SCC), which catalyzes the conversion of cholesterol to pregnenolone in the rate-limiting reaction of steroidogenesis in mitochondria of adrenal cortex cells. Northern blot and immunoblot analyses revealed that the mRNA and protein of these P-450 species were efficiently produced in COS-7 cells. The protein contents amounted to nearly 0.1% of the total cell protein as estimated from immunoblotting and low temperature CO difference spectra. The subcellular localization of the products indicated that they were correctly sorted to the microsomes and mitochondria, respectively. We have succeeded in eliciting most of the activity of the expressed microsomal P-450d by reconstruction with NADPH-cytochrome P-450 reductase, while the optimal conditions for the mitochondrial enzyme in the COS cells remain to be studied. These results show the applicability of the COS-7 expression system to investigations of the functions of members of the P-450 superfamily whose cDNA has been newly isolated.  相似文献   

17.
In eukaryotic cells, CLS (cardiolipin synthase) is involved in the final step of cardiolipin synthesis by catalysing the transfer of a phosphatidyl residue from CDP-DAG (diacylglycerol) to PG (phosphatidylglycerol). Despite an important role of cardiolipin in regulating mitochondrial function, a gene encoding the mammalian CLS has not been identified so far. We report in the present study the identification and characterization of a human cDNA encoding the first mammalian CLS [hCLS1 (human CLS1)]. The predicted hCLS1 peptide sequence shares significant homology with the yeast and plant CLS proteins. The recombinant hCLS1 enzyme expressed in COS-7 cells catalysed efficiently the synthesis of cardiolipin in vitro using CDP-DAG and PG as substrates. Furthermore, overexpression of hCLS1 cDNA in COS-7 cells resulted in a significant increase in cardiolipin synthesis in intact COS-7 cells without any significant effects on the activity of the endogenous phosphatidylglycerophosphate synthase of the transfected COS-7 cells. Immunohistochemical analysis demonstrated that the recombinant hCLS1 protein was localized to the mitochondria when transiently expressed in COS-7 cells, which was further corroborated by results from subcellular fractionation analyses of the recombinant hCLS1 protein. Northern-blot analysis showed that the hCLS1 gene was predominantly expressed in tissues that require high levels of mitochondrial activities for energy metabolism, with the highest expression in skeletal and cardiac muscles. High levels of hCLS1 expression were also detected in liver, pancreas, kidney and small intestine, implying a functional role of hCLS1 in these tissues.  相似文献   

18.
19.
Death-associated protein 3 (DAP3) was previously isolated in our laboratory as a positive mediator of cell death. It is a 46-kDa protein containing a GTP binding domain that was shown to be essential for the induction of cell death. DAP3 functions downstream of the receptor signaling complex, and its death-promoting effects depend on caspase activity. Recent reports have suggested that DAP3 is localized to the mitochondria, but no functional significance of this localization has been reported so far. Here, we study the sub-cellular localization and cellular function of human DAP3 (hDAP3). We found that hDAP3 is localized to the mitochondria and, in contrast to cytochrome c, is not released to the cytoplasm following several cell death signals. Overexpression of hDAP3 induced dramatic changes in the mitochondrial structure involving increased fragmentation of the mitochondria. Both the mitochondrial localization of hDAP3 and its GTP-binding activity were essential for the fragmentation. The punctiform mitochondrial morphology was similar to that observed upon treatment of HeLa cells with staurosporine. In fact, reduction of endogenous hDAP3 protein by RNA interference partially attenuated staurosporine-induced mitochondrial fission. Thus, hDAP3 is a necessary component in the molecular pathway that culminates in fragmented mitochondria, probably reflecting its involvement in the fission process. These results, for the first time, provide a specific functional role for hDAP3 in mitochondrial maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号