首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apomyoglobin (apoMb) folds through at least two partially folded forms that are detected both as transient intermediates during folding/unfolding kinetics or as stable intermediates at equilibrium. Here, I summarize the results of recent kinetic studies, which combined with detailed characterizations of equilibrium forms of the protein, provide a very detailed picture of apoMb folding process. The data are consistent with a linear U<->Ia<->Ib<->N model where compaction and structure are progressively acquired.  相似文献   

2.
Extensive analysis of accurate quench-flow hydrogen exchange results indicates that the burst phase kinetic intermediate in the folding of apomyoglobin (apoMb) from urea is structurally heterogeneous. The structural variability is associated with the partial folding of the E helix during the burst phase (<6.4ms) of the folding process. Analysis of the effects of exchange-out of amide proton labels during the labeling pulse ( approximately pH 10) of the quench-flow process indicates that three of the amide protons in the E helix are in fact largely protected in the burst phase of folding, while the remainder of the E helix has a substantial complement of amide protons that show biphasic kinetics, i.e. are protected partly during the burst phase and partly during the slow phase of folding. The locations of these amide protons can be used to map the sites of structural heterogeneity in the kinetic molten globule. These sites include, besides the E helix, the ends of the A and B helices and part of the C helix. Our results give significant support to the hypothesis that the kinetic molten globule intermediate of apoMb is native-like.  相似文献   

3.
The F helix region of sperm whale apomyoglobin is disordered, undergoing conformational fluctuations between a folded helical conformation and one or more locally unfolded states. To examine the effects of F helix stabilization on the folding pathway of apomyoglobin, we have introduced mutations to augment intrinsic helical structure in the F helix of the kinetic folding intermediate and to increase its propensity to fold early in the pathway, using predictions based on plots of the average area buried upon folding (AABUF) derived from the primary sequence. Two mutant proteins were prepared: a double mutant, P88K/S92K (F2), and a quadruple mutant, P88K/A90L/S92K/A94L (F4). Whereas the AABUF for F2 predicts that the F helix will not fold early in the pathway, the F helix in F4 shows a significantly increased AABUF and is therefore predicted to fold early. Protection of amide protons by formation of hydrogen-bonded helical structure during the early folding events has been analyzed by pH-pulse labeling. Consistent with the AABUF prediction, many of the F helix residues for F4 are significantly protected in the kinetic intermediate but are not protected in the F2 mutant. F4 folds via a kinetically trapped burst-phase intermediate that contains stabilized secondary structure in the A, B, F, G, and H helix regions. Rapid folding of the F helix stabilizes the central core of the misfolded intermediate and inhibits translocation of the H helix back to its native position, thereby decreasing the overall folding rate.  相似文献   

4.
Myoglobins can be divided into two groups. One group contains the usual myoglobins that have histidine at the distal (E7) position, and the other contains a few, but interesting myoglobins that lack the usual distal histidine residue. Spectroscopic examinations have shown that there is a remarkable difference in the Soret band between the two types of myoglobin, and an absorbance ratio of the Soret peak of the acidic met-form to that of the oxy-form seems to be very useful as a simple criterion for predicting whether or not a myoglobin has the usual distal histidine residue.  相似文献   

5.
The folding pathway of apomyoglobin has been experimentally shown to have early kinetic intermediates involving the A, B, G, and H helices. The earliest detected kinetic events occur on a ns to micros time scale. We show that the early folding kinetics of apomyoglobin may be understood as the association of nascent helices through a network of diffusion-collision-coalescence steps G + H <--> GH + A <--> AGH + B <--> ABGH obtained by solving the diffusion-collision model in a chemical kinetics approximation. Our reproduction of the experimental results indicates that the model is a useful way to analyze folding data. One prediction from our fit is that the nascent A and H helices should be relatively more helix-like before coalescence than the other apomyoglobin helices.  相似文献   

6.
Nagy JK  Sanders CR 《Biochemistry》2002,41(29):9021-9025
Although a number of common diseases are a direct consequence of membrane protein misfolding, studies of membrane protein folding and misfolding lag well behind those of soluble proteins. Here it is shown that an interfacial residue, Tyr16, of the integral membrane protein diacylglycerol kinase (DAGK) plays a critical role in the folding pathway of this protein. Properly folded Y16C exhibits kinetic parameters and stability similar to wild-type DAGK. However, when unfolded and then allowed to spontaneously fold in the presence of model membranes, Y16C exhibits dramatically lower rates and efficiencies of functional assembly compared to the wild-type protein. The Y16C mutant represents a class of mutations which may be commonly found in disease-related membrane proteins.  相似文献   

7.
Apomyoglobin kinetic and equilibrium unfolding and folding processes were studied at pH 6.2, 11 degrees C by stopped-flow tryptophan fluorescence. There are two distinct consecutive processes in apomyoglobin folding process, namely, the protein fast transition between the unfolded (U) and an intermediate (I) states (U <----> I) and slow transition between the intermediate and the native (N) states (I <----> N). Accumulation of the intermediate state was observed in the wide range of urea concentrations. The presence of the intermediate state was shown even beyond the middle transition on the unfolding limb. The dependence of observed folding/unfolding rates on urea concentration (chevron plot) was obtained. The shape of this dependence was compared with that of two-state proteins, folding from the U to N state.  相似文献   

8.
Solvation and desolvation dynamics around helices during the kinetic folding process of apomyoglobin (apoMb) were investigated by using time-resolved infrared (IR) spectroscopy based on continuous-flow rapid mixing devices and an IR microscope. The folding of apoMb can be described by the collapse and search mechanism, in which the initial collapse occurring within several hundreds of microseconds is followed by the search for the correct secondary and tertiary structures. The time-resolved IR measurements showed a significant increase in solvated helix possessing a component of amide I' at 1633 cm(-1) within 100 mus after initiating the folding by a pD jump from pD2.2 to 6.0. In contrast, there was a minor increase in buried helices having amide I' at 1652 cm(-1) in this time domain. The observations demonstrate that the initially collapsed conformation of apoMb possesses a large amount of solvated helices, and suggest that much water is retained inside the collapsed domain. The contents of solvated and buried helices decrease and increase, respectively, in the time domain after the collapse, showing that the stepwise desolvation around helices is associated with the conformational search process. Interestingly, the largest changes in solvated and buried helices were observed at the final rate-limiting step of the apoMb folding. The persistence of the solvated helix until the final stage of apoMb folding suggests that the dissociation of hydrogen bonds between water and main-chain amides contributes to the energy barrier in the rate-determining step of the folding.  相似文献   

9.
Schwarzinger S  Wright PE  Dyson HJ 《Biochemistry》2002,41(42):12681-12686
Unfolded apomyoglobin in 8 M urea at pH 2.3 displays distinct regions with different backbone mobility, as monitored by NMR relaxation. These variations in backbone mobility can be correlated with intrinsic properties of the amino acids in the sequence. Clusters of small amino acids such as glycine and alanine show increased backbone mobility compared to the average. In contrast, local hydrophobic interactions that persist in urea denaturant cause some restriction of backbone motions on a picosecond to nanosecond time scale. The model derived from the behavior of apoMb in urea depends only on the most fundamental properties of the local amino acid sequence, and thus provides a feasible paradigm for the initiation of folding.  相似文献   

10.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

11.
For small single-domain proteins, formation of the native conformation (N) from a fully unfolded form (U) or from a partially folded intermediate (I) occurs typically in a highly cooperative process that can be described by a two-state model. However, it is not clear whether cooperativity arises early along the folding reaction and whether folding intermediates are also formed in highly cooperative processes. Here, we show that each previously identified step leading apomyoglobin from its unfolded form to its native form, namely, the U <= => Ia, the Ia <= => Ib, and the Ib <= => N reactions, exhibits typical features of a two-state reaction. First, refolding and unfolding kinetics of the earliest U <= => Ia reaction are measurable at pH 4.2 within the urea-induced unfolding transition [Jamin, M., and Baldwin, R. L. (1996) Nat. Struct. Biol. 3, 613-618; Jamin, M., and Baldwin, R. L. (1998) J. Mol. Biol. 276, 491-504], and we report here that sub-millisecond kinetics measured by far-UV circular dichroism (CD), a probe of secondary structure, are similar to those measured by Trp fluorescence, a probe of hydrophobic core formation and chain collapse. These results confirm that folding of the earliest intermediate, Ia, occurs in a highly cooperative process, in which hydrophobic collapse and secondary structure formation occur concomitantly in the A(B)GH core. Second, when the refolding of N is measured at high pH, starting from the acid-unfolded ensemble, the formation of Ia occurs in the mixing time of the sub-millisecond stopped-flow, but the subsequent steps, the Ia <= => Ib and Ib <= => N reactions, exhibit similar kinetics by far-UV CD and Trp fluorescence, indicating that these two late stages of the apoMb folding process also occur in highly cooperative, two-state reactions.  相似文献   

12.
Competence for DNA uptake and genetic transformation in Streptococcus pneumoniae is regulated by a quorum-sensing system. A competence-stimulating polypeptide (CSP) is secreted by the bacteria and acts back on the cells via a transmembrane histidine kinase. This enzyme phosphorylates a response regulator that activates synthesis of a SigH-like protein. The new sigma factor enables expression of a set of proteins transcribed from a novel promoter. A mutation called trt had been found that circumvented this regulation. The mutant cells are constitutively competent; that is, they can be transformed at low cell densities, in the presence of proteases that attack CSP, or during growth at low pH. In this work, cells containing trt were shown to be competent even in the presence of a comAB mutation that blocks secretion of CSP. The trt mutation was localized to comD, the gene encoding the transmembrane histidine kinase. A DNA segment of the trt mutant corresponding to comCDE was cloned, and it was shown to contain the trt mutation by its ability to confer constitutive competence. A two-step assay, which was based on transfer of trt to a wild strain and screening for transformability in the presence of trypsin, served to locate the trt mutation precisely. It corresponds to a GC-->AT transition, which changes Asp299 in the histidine kinase to Asn. This alteration in the carboxyl terminal half of the protein, which is cytoplasmically located and contains the phosphorylase activity, presumably alters the enzyme conformation so that it is permanently activated, independent of signals from the transmembrane domain. These results may help illuminate the mechanism by which external signals affect kinase action in two-component regulatory systems, and they may be of practical value in facilitating genetic studies by rendering pneumococcal strains permanently competent.  相似文献   

13.
Some insects have a globin exclusively in their fast-growing larval stage. This is the case in the 4th-instar larva of Tokunagayusurika akamusi, a common midge found in Japan. In the polymorphic hemoglobin comprised of 11 separable components, hemoglobin VII (Ta-VII Hb) was of particular interest. When its ferric met-form was exposed to pH 5.0 from 7.2, the distal histidine was found to swing away from the E7 position. As a result, the iron(III) was converted from a hexacoordinate to a pentacoordinate form by a concomitant loss of the axial water ligand. The corresponding spectral changes in the Soret band were therefore followed by stopped-flow and rapid-scan techniques, and the observed first-order rate constants of k(out) = 25 s(-1) and kin = 128 s(-1) were obtained for the outward and inward movements, respectively, of the distal histidine residue in 0.1 m buffer at 25 degrees C. For O2 affinity, Ta-VII Hb showed a value of P50 = 1.7 Torr at pH 7.4, accompanied with a remarkable Bohr effect (deltaH+ = -0.58) almost equal to that of mammalian hemoglobins. We have also investigated the stability property of Ta-VII HbO2 in terms of the autoxidation rate over a wide range of pH from 4 to 11. The resulting pH-dependence curve was compared with those of another component Ta-V HbO2 and sperm whale MbO2, and described based on a nucleophilic displacement mechanism. In light of the O2 binding affinity, Bohr effect and considerable stability of the bound O2 against acidic autoxidation, we conclude that T. akamusi Hb VII can play an important role in O2 transport and storage as the major component in the larval hemolymph.  相似文献   

14.
Experimental approaches, including circular dichroism, small angle X-ray scattering, steady-state fluorescence, and fluorescence energy transfer, were applied to study the 3D-structure of apomyolgobin in different conformational states. These included the native and molten globules, along with either less ordered conformations induced by the addition of anions or completely unfolded states. The results show that the partially folded forms of apomyoglobin stabilized by KCl and/or Na(2)SO(4) under unfolding conditions (pH 2) exhibit a significant amount of secondary structure (circular dichroism), low packing density of protein molecules (SAXS), and native-like dimensions of the AGH core (fluorescence energy transfer). This finding indicates that a native-like tertiary fold of the polypeptide chain, i.e., the spatial organization of secondary structure elements, most likely emerges prior to the formation of the molten globule state.  相似文献   

15.
The structure, thermodynamics, and kinetics of heat-induced unfolding of sperm whale apomyoglobin core formation have been studied. The most rudimentary core is formed at pH(*) 3.0 and up to 60 mM NaCl. Steady state for ultraviolet circular dichroism and fluorescence melting studies indicate that the core in this acid-destabilized state consists of a heterogeneous composition of structures of approximately 26 residues, two-thirds of the number involved for horse heart apomyoglobin under these conditions. Fluorescence temperature-jump relaxation studies show that there is only one process involved in Trp burial. This occurs in 20 micro s for a 7 degrees jump to 52 degrees C, which is close to the limits placed by diffusion on folding reactions. However, infrared temperature jump studies monitoring native helix burial are biexponential with times of 5 micro s and 56 micro s for a similar temperature jump. Both fluorescence and infrared fast phases are energetically favorable but the slow infrared absorbance phase is highly temperature-dependent, indicating a substantial enthalpic barrier for this process. The kinetics are best understood by a multiple-pathway kinetics model. The rapid phases likely represent direct burial of one or both of the Trp residues and parts of the G- and H-helices. We attribute the slow phase to burial and subsequent rearrangement of a misformed core or to a collapse having a high energy barrier wherein both Trps are solvent-exposed.  相似文献   

16.
An acid-destabilized form of apomyoglobin, the so-called E state, consists of a set of heterogeneous structures that are all characterized by a stable hydrophobic core composed of 30-40 residues at the intersection of the A, G, and H helices of the protein, with little other secondary structure and no other tertiary structure. Relaxation kinetics studies were carried out to characterize the dynamics of core melting and formation in this protein. The unfolding and/or refolding response is induced by a laser-induced temperature jump between the folded and unfolded forms of E, and structural changes are monitored using the infrared amide I' absorbance at 1648-1651 cm(-1) that reports on the formation of solvent-protected, native-like helix in the core and by fluorescence emission changes from apomyoglobin's Trp14, a measure of burial of the indole group of this residue. The fluorescence kinetics data are monoexponential with a relaxation time of 14 micros. However, infrared kinetics data are best fit to a biexponential function with relaxation times of 14 and 59 micros. These relaxation times are very fast, close to the limits placed on folding reactions by diffusion. The 14 micros relaxation time is weakly temperature dependent and thus represents a pathway that is energetically downhill. The appearance of this relaxation time in both the fluorescence and infrared measurements indicates that this folding event proceeds by a concomitant formation of compact secondary and tertiary structures. The 59 micros relaxation time is much more strongly temperature dependent and has no fluorescence counterpart, indicating an activated process with a large energy barrier wherein nonspecific hydrophobic interactions between helix A and the G and H helices cause some helix burial but Trp14 remains solvent exposed. These results are best fit by a multiple-pathway kinetic model when U collapses to form the various folded core structures of E. Thus, the results suggest very robust dynamics for core formation involving multiple folding pathways and provide significant insight into the primary processes of protein folding.  相似文献   

17.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

18.
Incubation of carnitine acetyltransferase with low concentrations of bromoacetyl-l-carnitine causes a rapid and irreversible loss of enzyme activity; one mol of inhibitor can inactivate one mol of enzyme. Bromoacetyl-d-carnitine, iodoacetate or iodoacetamide are ineffective. l-Carnitine protects the transferase from bromoacetyl-l-carnitine. Investigation shows that the enzyme first reversibly binds bromoacetyl-l-carnitine with an affinity similar to that shown for the normal substrate acetyl-l-carnitine; this binding is followed by an alkylation reaction, forming the carnitine ester of a monocarboxymethyl-protein, which is catalytically inactive. The carnitine is released at an appreciable rate by spontaneous hydrolysis, and the resulting carboxymethyl-enzyme is also inactive. Total acid hydrolysis of enzyme after treatment with 2-[(14)C]bromoacetyl-l-carnitine yields N-3-carboxy[(14)C]methylhistidine as the only labelled amino acid. These findings, taken in conjunction with previous work, suggest that the single active centre of carnitine acetyltransferase contains a histidine residue.  相似文献   

19.
To find a simple criterion for the presence of the distal (E7) histidine residue in myoglobins and hemoglobins, the Soret magnetic-circular-dichroic spectra were examined for ferric metmyoglobins from various species. A distinct and symmetric dispersion-type curve was obtained for myoglobins containing the distal histidine, whereas a relatively weak and unsymmetric pattern was observed for myoglobins lacking this residue, such as those from three kinds of gastropodic sea molluscs, a shark and the African elephant. The magnetic-circular-dichroic spectra obtained would thus be a direct reflection of the presence or absence of a water molecule at the sixth coordinate position of the heme iron(III), this axial water ligand being stabilized by hydrogen-bond formation to the distal histidine residue. On the basis of these Soret magnetic-circular-dichroic signals, we also examined the structure of a protozoan myoglobin (or a monomeric hemoglobin) from Paramecium caudatum of particular interest for the evolution of these proteins from protozoa to higher animals.  相似文献   

20.
The oxygenated form of myoglobin or hemoglobin is oxidized easily to the ferric met-form with generation of the superoxide anion. To make clear the possible role(s) of the distal histidine (H64) residue in the reaction, we have carried out detailed pH-dependence studies of the autoxidation rate, using some typical H64 mutants of sperm whale myoglobin, over the wide range of pH 5-12 in 0.1 M buffer at 25 degrees C. Each mutation caused a dramatic increase in the autoxidation rate with the trend H64V >/= H64G >/= H64L > H64Q > H64 (wild-type) at pH 7.0, whereas each mutant protein showed a characteristic pH-profile which is essentially different from that of the wild-type or native sperm whale MbO2. In particular, all the mutants have lost the acid-catalyzed process that can play a dominant role in the autoxidation reaction of most mammalian myoglobins or hemoglobins. Kinetic analyses of various types of pH-profiles lead us to conclude that the distal histidine residue can play a dual role in the nucleophilic displacement of O2- from MbO2 or HbO2 in protic, aqueous solution. One is in a proton-relay mechanism via its imidazole ring, and the other is in the maximum protection of the FeO2 center against a water molecule or an hydroxyl ion that can enter the heme pocket from the surrounding solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号