共查询到20条相似文献,搜索用时 15 毫秒
1.
FrzCD, a methyl-accepting taxis protein from Myxococcus xanthus, shows modulated methylation during fruiting body formation. 总被引:4,自引:0,他引:4 下载免费PDF全文
The frizzy (frz) genes of Myxococcus xanthus are required to control directed motility during vegetative growth and fruiting body formation. FrzCD, a protein homologous to the methyl-accepting chemotaxis proteins from enteric bacteria, is modified by methylation in response to environmental conditions. Transfer of cells from rich medium to fruiting medium initially caused rapid demethylation of FrzCD. Subsequently, the amount of FrzCD increased, but most remained unmethylated. At about the time of mound formation (9 h), most of the FrzCD was converted to methylated forms. Dispersal of developing cells (10 h) in buffer led to the demethylation of FrzCD, whereas concentration of these cells caused methylation of FrzCD. Some mutants which were unable to form fruiting bodies still modified their FrzCD during incubation under conditions of starvation on a surface. 相似文献
2.
Methylation of FrzCD Defines a Discrete Step in the Developmental Program of Myxococcus xanthus 总被引:1,自引:0,他引:1 下载免费PDF全文
Yongzhi Geng Zhaomin Yang John Downard David Zusman Wenyuan Shi 《Journal of bacteriology》1998,180(21):5765-5768
Myxococcus xanthus is a gram-negative soil bacterium which undergoes fruiting body formation during starvation. The frz signal transduction system has been found to play an important role in this process. FrzCD, a methyl-accepting taxis protein homologue, shows modulated methylation during cellular aggregation, which is thought to be part of an adaptation response to an aggregation signal. In this study, we assayed FrzCD methylation in many known and newly isolated mutants defective in fruiting body formation to determine a possible relationship between the methylation response and fruiting morphology. The results of our analysis indicated that the developmental mutants could be divided into two groups based on their ability to show normal FrzCD methylation during development. Many mutants blocked early in development, i.e., nonaggregating or abnormally aggregating mutants, showed poor FrzCD methylation. The well-characterized asg, bsg, csg, and esg mutants were found to be of this type. The defects in FrzCD methylation of these signaling mutants could be partially rescued by extracellular complementation with wild-type cells or addition of chemicals which restore their fruiting body formation. Mutants blocked in late development, i.e., translucent mounds, showed normal FrzCD methylation. Surprisingly, some mutants blocked in early development also exhibited a normal level of FrzCD methylation. The characterized mutants in this group were found to be defective in social motility. This indicates that FrzCD methylation defines a discrete step in the development of M. xanthus and that social motility mutants are not blocked in these early developmental steps. 相似文献
3.
Cells of Myxococcus xanthus will, at times, organize their movement such that macroscopic traveling waves, termed ripples, are formed as groups of cells glide together on a solid surface. The reason for this behavior has long been a mystery, but we demonstrate here that rippling is a feeding behavior which occurs when M. xanthus cells make direct contact with either prey or large macromolecules. Rippling has been observed during two fundamentally distinct environmental conditions: (i) starvation-induced fruiting body development and (ii) predation of other organisms. Our results indicate that case (i) does not occur in all wild-type strains and is dependent on the intrinsic level of autolysis. Analysis of predatory rippling indicates that rippling behavior is inducible during predation on proteobacteria, gram-positive bacteria, yeast (such as Saccharomyces cerevisiae), and phage. Predatory efficiency decreases under genetic and physiological conditions in which rippling is inhibited. Rippling will also occur in the presence of purified macromolecules such as peptidoglycan, protein, and nucleic acid but does not occur in the presence of the respective monomeric components and also does not occur when the macromolecules are physically separated from M. xanthus cells. We conclude that rippling behavior is a mechanism utilized to efficiently consume nondiffusing growth substrates and that developmental rippling is a result of scavenging lysed cell debris. 相似文献
4.
Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of FrzCD. 总被引:9,自引:10,他引:9 下载免费PDF全文
Myxococcus xanthus is a bacterium that moves by gliding motility and exhibits multicellular development (fruiting body formation). The frizzy (frz) mutants aggregate aberrantly and therefore fail to form fruiting bodies. Individual frz cells cannot control the frequency at which they reverse direction while gliding. Previously, FrzCD was shown to exhibit significant sequence similarity to the enteric methyl-accepting chemotaxis proteins. In this report, we show that FrzCD is modified by methylation and that frzF encodes the methyltransferase. We also identify a new gene, frzG, whose predicted product is homologous to that of the cheB (methylesterase) gene from Escherichia coli. Thus, although M. xanthus is unflagellated, it appears to have a sensory transduction system which is similar in many of its components to those found in flagellated bacteria. 相似文献
5.
Fruiting body formation in Myxococcus xanthus involves the aggregation of cells to form mounds and the differentiation of rod-shaped cells into spherical myxospores. The surface of the myxospore is composed of several sodium dodecyl sulfate (SDS)-soluble proteins, the best characterized of which is protein S (Mr, 19,000). We have identified a new major spore surface protein called protein C (Mr, 30,000). Protein C is not present in extracts of vegetative cells but appears in extracts of developing cells by 6 h. Protein C, like protein S, is produced during starvation in liquid medium but is not made during glycerol-induced sporulation. Its synthesis is blocked in certain developmental mutants but not others. When examined by SDS-polyacrylamide gel electrophoresis, two forms of protein C are observed. Protein C is quantitatively released from spores by treatment with 0.1 N NaOH or by boiling in 1% SDS. It is slowly washed from the spore surface in water but is stabilized by the presence of magnesium. Protein C binds to the surface of spores depleted of protein C and protein S. Protein C is a useful new marker for development in M. xanthus because it is developmentally regulated, spore associated, abundant, and easily purified. 相似文献
6.
M Dworkin 《Journal of bacteriology》1983,154(1):452-459
With time-lapse videomicroscopy it was demonstrated that cells of Myxococcus xanthus are capable of directed (tactic) movement toward appropriate targets. Mutants that had lost A motility (J. Hodgkin and D. Kaiser, Mol. Gen. Genet. 171:177-191, 1979) were unable to show directed movement. Cells showed directed movement to polystyrene latex beads and to glass beads, as well as to clumps of Micrococcus luteus. This is consistent with other observations in an accompanying paper (M. Dworkin and D. Eide, J. Bacteriol. 154:437-442, 1983) that indicate that M. xanthus does not perceive chemical gradients. 相似文献
7.
A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. 总被引:8,自引:5,他引:3 下载免费PDF全文
C S Harwood 《Journal of bacteriology》1989,171(9):4603-4608
Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for several reasons: its molecular weight is similar to the molecular weights of Escherichia coli methyl-accepting chemotaxis proteins, the amount of time required to attain maximal methylation correlated with the time needed for behavioral adaptation of P. putida cells to benzoate, and methylation was stimulated by benzoate only in cells induced for chemotaxis to benzoate. Also, a mutant specifically defective in benzoate taxis failed to show any stimulation of methylation upon addition of benzoate. Benzoylformate did not stimulate protein methylation in cells induced for benzoylformate chemotaxis, suggesting that sensory input from this second group of aromatic-acid attractants is processed through a different kind of chemosensory pathway. The chemotactic responses of P. putida cells to benzoate and benzoylformate were not sensitive to external pH over a range (6.2 to 7.7) which would vary the protonated forms of these weak acids by a factor of about 30. This indicates that detection of cytoplasmic pH is not the basis for aromatic-acid taxis in P. putida. 相似文献
8.
The gliding behavior of Myxococcus xanthus cells is controlled by two multigene systems, A and S, which encode information for adventurous and social behaviors, respectively. The S system can be genetically disrupted through mutation, such as a dsp mutation, or phenotypically disrupted by treating cells with the diazo dye Congo red (Arnold and Shimkets, J. Bacteriol. 170:5765-5770, 1988). One of the functions controlled by the S system is cell agglutination. Immediately after the induction of agglutination, wild-type cells begin to form aggregates, and within 30 min the cells are packed side-to-side in clumps containing thousands of cells. Changes in the cohesive properties of S+ cells are correlated with changes in the topology of the cell surface observed by electron microscopy. Two types of cell-associated appendages were observed on wild-type cells: thin filaments (ca. 5 nm in diameter), which have been called fimbriae or pili, at one cell pole, and thick, flaccid filaments (ca. 50 nm in diameter), referred to as fibrils, at both the sides and tips of cells. Cohesion was correlated with the secretion of the thick fibrils, which coat the cell surface and form an extracellular matrix in which the cells are interconnected. Several lines of evidence suggest that these thick fibrils are involved in cohesion. First, Dsp cells were unable to agglutinate or secrete this extracellular material. Second, wild-type cells which were treated with Congo red neither agglutinated nor secreted the extracellular fibrils. Finally, removal of the Congo red from wild-type cells restored cohesion and also restored production of the thick fibrils. Attempts to estimate the efficiency with which two cells cohered following collision suggested that under optimal conditions, one in three collisions resulted in stable contact. The collision efficiency decreased linearly as the cell density increased, suggesting a cell density-dependent regulation of cohesion. Some aspects of gliding behavior can be explained in terms of an inducer and an inhibitor of S motility. 相似文献
9.
Protein U, a late-developmental spore coat protein of Myxococcus xanthus, is a secretory protein. 总被引:1,自引:2,他引:1 下载免费PDF全文
Protein U is a spore coat protein produced at the late stage of development of Myxococcus xanthus. This protein was isolated from developmental cells, and its amino-terminal sequence was determined. On the basis of this sequence, the gene for protein U (pru) was cloned and its DNA sequence was determined, revealing an open reading frame of 179 codons. The product from this open reading frame has a typical signal peptide of 25 amino acid residues at the amino terminal end, followed by protein U of 154 residues. This result indicates that protein U is produced as a secretory precursor, pro-protein U, which is then secreted across the membrane to assemble on the spore surface. This is in sharp contrast to protein S, a major spore coat protein produced early in development, which has no signal peptide, indicating that there are two distinct pathways for trafficking of spore coat proteins during the differentiation of M. xanthus. 相似文献
10.
S M Panasenko 《Journal of bacteriology》1985,164(2):495-500
Covalent modification of macromolecules can serve to alter their biological activities and is therefore frequently involved in regulation. I examined methylation of proteins and carbohydrates during development and vegetative growth in the procaryote Myxococcus xanthus. Striking differences in the patterns of protein methylation occurred when cell development was induced by nutrient deprivation on solid media and when cells were starved in liquid. In addition, a methylated, protease-resistant macromolecule which contained carbohydrate and which may have been an unusual type of lipopolysaccharide was observed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of methylation patterns in various media and an analysis of the time course of methylation indicated that changes in methylation were part of the developmental pathway which includes aggregation. Induction of development in liquid by glycerol produced no changes in methylation. 相似文献
11.
VGP is a major cell-surface glycoprotein present in vegetative cells of Myxococcus xanthus. Serological assays indicated that this protein was released from cells and accumulated in the medium during development, i.e., aggregation, fruiting body formation, and myxosporulation. Cells induced to form spores in the absence of aggregation retained VGP, indicating that loss of VGP was associated with developmental aggregation rather than myxosporulation. Anti-VGP antibodies inhibited vegetative cell gliding, suggesting the protein may also be required for motility. 相似文献
12.
DifA is a methyl-accepting chemotaxis protein (MCP)-like sensory transducer that regulates exopolysaccharide (EPS) production in Myxococcus xanthus. Here mutational analysis and molecular biology were used to probe the signaling mechanisms of DifA in EPS regulation. We first identified the start codon of DifA experimentally; this identification extended the N terminus of DifA for 45 amino acids (aa) from the previous bioinformatics prediction. This extension helped to address the outstanding question of how DifA receives input signals from type 4 pili without a prominent periplasmic domain. The results suggest that DifA uses its N-terminus extension to sense an upstream signal in EPS regulation. We suggest that the perception of the input signal by DifA is mediated by protein-protein interactions with upstream components. Subsequent signal transmission likely involves transmembrane signaling instead of direct intramolecular interactions between the input and the output modules in the cytoplasm. The basic functional unit of DifA for signal transduction is likely dimeric as mutational alteration of the predicted dimeric interface of DifA significantly affected EPS production. Deletions of 14-aa segments in the C terminus suggest that the newly defined flexible bundle subdomain in MCPs is likely critical for DifA function because shortening of this bundle can lead to constitutively active mutations. 相似文献
13.
A development-specific protein in Myxococcus xanthus is associated with the extracellular fibrils. 下载免费PDF全文
We have been using monoclonal antibodies (MAbs) as probes to study developmentally relevant cell surface antigens (CSA) that may be required for cellular interactions in Myxococcus xanthus. Three independently isolated MAbs, G69, G357, and G645, isolated by Gill and Dworkin recognize a CSA detectable only on developing cells (J. S. Gill and M. Dworkin, J. Bacteriol. 168:505-511, 1986). The CSA is made within the first 30 min of submerged development and increases until myxosporulation. The CSA is also produced at low levels after 24 h in shaken-starved cultures and during glycerol sporulation. No antigen can be detected in lysed, vegetative cells, and expression of the antigen is blocked in the presence of rifampin or chloramphenicol. The antigen is expressed in submerged, developmental cultures of asg, bsg, csg, dsg, and mgl mutants and is not expressed in a dsp mutant. All of the three MAbs immunoprecipitate the same protein of approximately 97,000 Da from lysed developmental cells. Competitive immunoprecipitations suggest that they recognize at least two different epitopes on the CSA. The epitopes recognized by MAbs G69, G357, and G645 are sensitive to protease digestion, whereas the epitopes recognized by MAbs G357 and G645 are resistant to periodate oxidation. The epitope recognized by MAb G69 is sensitive to periodate oxidation. Fractionation of lysed developing cells shows that most of the antigen is localized in the pellet after centrifugation at 100,000 x g. To determine whether the antigen is expressed on the cell surface, we labeled developing whole cells with either MAb G69, G357, or G645 and gold-labeled anti-mouse immunoglobulin G. Low-voltage scanning electron microscopy of labeled cells shows that the antigen is associated with the fibrillar matrix that surrounds the cells and that the antigen is retained on isolated, developmental fibrils from M. xanthus. The CSA has been designated dFA-1, for developmental fibrillar antigen 1. 相似文献
14.
Myxococcus xanthus moves by gliding motility powered by type IV pili (S-motility) and distributed motor complexes (A-motility). The Frz chemosensory pathway controls reversals for both motility systems. However, it is unclear how the Frz pathway can communicate with these different systems. In this article, we show that FrzCD, the Frz pathway receptor, interacts with AglZ, a protein associated with A-motility. Affinity chromatography and cross-linking experiments showed that the FrzCD–AglZ interaction occurs between the uncharacterized N-terminal region of FrzCD and the N-terminal pseudo-receiver domain of AglZ. Fluorescence microscopy showed AglZ–mCherry and FrzCD–GFP localized in clusters that occupy different positions in cells. To study the role of the Frz system in the regulation of A-motility, we constructed aglZ frzCD double mutants and aglZ frzCD pilA triple mutants. To our surprise, these mutants, predicted to show no A-motility (A- S+ ) or no motility at all (A- S- ), respectively, showed restored A-motility. These results indicate that AglZ modulates a FrzCD activity that inhibits A-motility. We hypothesize that AglZ–FrzCD interactions are favoured when cells are isolated and moving by A-motility and inhibited when S-motility predominates and A-motility is reduced. 相似文献
15.
16.
We report here the identification and characterization of a member of the Myxococcus xanthus SdeK signal transduction pathway, BrgE. This protein was identified as an SdeK-interacting component using a yeast two-hybrid screen, and we further confirmed this interaction by the glutathione S-transferase (GST) pulldown assay. Additional yeast two-hybrid analyses revealed that BrgE preferentially interacts with the putative amino-terminal sensor domain of SdeK, but not with the carboxy-terminal kinase domain. A brgE insertion strain was shown to be blocked in development between aggregation and mound formation, and decreased by 50-fold in viable spore production compared with the parental wild type. These phenotypes are similar to those of sdeK mutants. The brgE mutation also altered expression of a sample of Tn5 lac developmental markers that are also SdeK regulated. Finally, we demonstrated that a brgE sdeK double mutant has a more severe sporulation defect than either of the two single mutants, suggesting that BrgE and SdeK act synergistically to regulate wild-type levels of sporulation. In sum, these data suggest that BrgE operates as an auxiliary factor to stimulate the SdeK signal transduction pathway by directly binding to the amino-terminal sensor domain of SdeK. 相似文献
17.
Changes in cell surface hydrophobicity of Myxococcus xanthus are correlated with sporulation-related events in the developmental program. 下载免费PDF全文
Cell surface hydrophobicity was measured in the bacterium Myxococcus xanthus during vegetative growth, fruiting body formation, and glycerol-induced spore formation by the method of Rosenberg et al. (FEMS Microbiol. Lett. 9:29-33, 1980). A significant decrease in cell surface hydrophobicity was observed 12 to 36 h after fruiting body formation and 60 to 120 min after glycerol-induced sporulation. The hydrophilic shift was correlated with the ability of the cells to sporulate but not with their ability to aggregate. Sucrose gradient purification removed the hydrophilic substance from the fruiting body spores but not from the glycerol-induced spores. The change in cell surface hydrophobicity in M. xanthus should be a useful developmental marker. 相似文献
18.
The minimal requirements for vegetative growth of Myxococcus xanthus have been sought. Isoleucine, leucine, and valine were required, and vitamin B12 was needed for the synthesis of methionine. Pyruvate was an excellent energy source and an efficient source of cellular carbon. Acetate, aspartate, glutamate, and most tricarboxylic acid cycle intermediates could also be utilized, but were less efficient sources of carbon and energy than was pyruvate. Many mono- and disaccharides were tested, but, in agreement with earlier results, none served as carbon-energy sources. A minimal medium (A1) has been devised that includes the essential amino acids and vitamin B12, with pyruvate and aspartate as carbon-energy sources. In this medium, M. xanthus could propagate indefinitely, and on it vegetative cells formed colonies with greater than 75% efficiency; hence, it is likely that no organic cofactors other than those present in A1 are required in more than trace amounts. 相似文献
19.
CsgA, an extracellular protein essential for Myxococcus xanthus development. 总被引:8,自引:11,他引:8 下载免费PDF全文
CsgA mutants of Myxococcus xanthus appear to be defective in producing an extracellular molecule essential for the developmental behaviors of this bacterium. The csgA gene encodes a 17.7-kilodalton polypeptide whose function and cellular location were investigated with immunological probes. Large quantities of the CsgA gene product were obtained from a lacZ-csgA translational gene fusion expressed in Escherichia coli. The chimeric 21-kilodalton protein was purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Affinity-purified polyclonal antibodies raised against the fusion protein were used to determine the cellular location of the native CsgA protein by colloidal gold labeling and transmission electron microscopy. Between 1,100 and 2,200 extracellular molecules of CsgA per developing M. xanthus cell were detected, most of which were associated with the extracellular matrix. The anti-CsgA antibodies inhibited wild-type development unless they were first neutralized with the fusion protein. Together these results suggest that the CsgA gene product has an essential, extracellular function during development, possibly as a pheromone. 相似文献
20.
David J. White Robin Merod Bobbie Thomasson Patricia L. Hartzell 《Molecular microbiology》2001,42(2):503-517
A gene encoding a homologue of the Escherichia coli GidA protein (glucose-inhibited division protein A) lies immediately upstream of aglU, a gene encoding a WD-repeat protein required for motility and development in Myxococcus xanthus. The GidA protein of M. xanthus shares about 48% identity overall with the small (approximately equal to 450 amino acid) form of GidA from eubacteria and about 24% identity overall with the large (approximately equal to 620 amino acid) form of GidA from eubacteria and eukaryotes. Each of these proteins has a conserved dinucleotide-binding motif at the N-terminus. To determine if GidA binds dinucleotide, the M. xanthus gene was expressed with a His6 tag in E. coli cells. Purified rGidA is a yellow protein that absorbs maximally at 374 and 450 nm, consistent with FAD or FMN. Thin-layer chromatography (TLC) showed that rGidA contains an FAD cofactor. Fractionation and immunocytochemical localization show that full length GidA protein is present in the cytoplasm and transported to the periplasm of vegetative-grown M. xanthus cells. In cells that have been starved for nutrients, GidA is found in the cytoplasm. Although GidA lacks an obvious signal sequence, it contains a twin arginine transport (Tat) motif, which is conserved among proteins that bind cofactors in the cytoplasm and are transported to the periplasm as folded proteins. To determine if GidA, like AglU, is involved in motility and development, the gidA gene was disrupted. The gidA- mutant has wild-type gliding motility and initially is able to form fruiting bodies like the wild type when starved for nutrients. However, after several generations, a stable derivative arises, gidA*, which is indistinguishable from the gidA- parent on vegetative medium, but is no longer able to form fruiting bodies. The gidA* mutant releases a heat-stable, protease-resistant, small molecular weight molecule that acts in trans to inhibit aggregation and gene expression of wild-type cells during development. 相似文献