共查询到20条相似文献,搜索用时 0 毫秒
1.
Recruitment of the GRIP domain golgins to the trans-Golgi network is mediated by Arl1, a member of the ARF/Arl small GTPase family, through interaction between their GRIP domains and Arl1-GTP. The crystal structure of Arl1-GTP in complex with the GRIP domain of golgin-245 shows that Arl1-GTP interacts with the GRIP domain predominantly in a hydrophobic manner, with the switch II region conferring the main recognition surface. The involvement of the switch and interswitch regions in the interaction between Arl1-GTP and GRIP accounts for the specificity of GRIP domain for Arl1-GTP. Mutations that abolished the Arl1-mediated Golgi localization of GRIP domain golgins have been mapped on the interface between Arl1-GTP and GRIP. Notably, the GRIP domain forms a homodimer in which each subunit interacts separately with one Arl1-GTP. Mutations disrupting the GRIP domain dimerization also abrogated its Golgi targeting, suggesting that the dimeric form of GRIP domain is a functional unit. 相似文献
2.
Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p 总被引:1,自引:0,他引:1
The GTPase Arl3p is required to recruit a second GTPase, Arl1p, to the Golgi in Saccharomyces cerevisiae. Arl1p binds to the GRIP domain, which is present in a number of long coiled-coil proteins or 'golgins'. Here we show that Arl3p is not myristoylated like most members of the Arf family, but is instead amino-terminally acetylated by the NatC complex. Targeting of Arl3p also requires a Golgi membrane protein Sys1p. The human homologues of Arl3p (Arf-related protein 1 (ARFRP1)) and Sys1p (hSys1) can be isolated in a complex after chemical cross-linking. This suggests that the targeting of ARFRP1/Arl3p to the Golgi is mediated by a direct interaction between its acetylated N terminus and Sys1p/hSys1. 相似文献
3.
Demmel L Beck M Klose C Schlaitz AL Gloor Y Hsu PP Havlis J Shevchenko A Krause E Kalaidzidis Y Walch-Solimena C 《Molecular biology of the cell》2008,19(3):1046-1061
The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p-14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling. 相似文献
4.
5.
Kevei E Gyula P Fehér B Tóth R Viczián A Kircher S Rea D Dorjgotov D Schäfer E Millar AJ Kozma-Bognár L Nagy F 《Current biology : CB》2007,17(17):1456-1464
6.
The ectodomain shedding of syndecan-1, a major cell surface heparan sulfate proteoglycan, modulates molecular and cellular processes central to the pathogenesis of inflammatory diseases. Syndecan-1 shedding is a highly regulated process in which outside-in signaling accelerates the proteolytic cleavage of syndecan-1 ectodomains at the cell surface. Several extracellular agonists that induce syndecan-1 shedding and metalloproteinases that cleave syndecan-1 ectodomains have been identified, but the intracellular mechanisms that regulate syndecan-1 shedding are largely unknown. Here we examined the role of the syndecan-1 cytoplasmic domain in the regulation of agonist-induced syndecan-1 shedding. Our results showed that the syndecan-1 cytoplasmic domain is essential because mutation of invariant cytoplasmic Tyr residues abrogates ectodomain shedding, but not because it is Tyr phosphorylated upon shedding stimulation. Instead, our data showed that the syndecan-1 cytoplasmic domain binds to Rab5, a small GTPase that regulates intracellular trafficking and signaling events, and this interaction controls the onset of syndecan-1 shedding. Syndecan-1 cytoplasmic domain bound specifically to Rab5 and preferentially to inactive GDP-Rab5 over active GTP-Rab5, and shedding stimulation induced the dissociation of Rab5 from the syndecan-1 cytoplasmic domain. Moreover, the expression of dominant-negative Rab5, unable to exchange GDP for GTP, interfered with the agonist-induced dissociation of Rab5 from the syndecan-1 cytoplasmic domain and significantly inhibited syndecan-1 shedding induced by several distinct agonists. Based on these data, we propose that Rab5 is a critical regulator of syndecan-1 shedding that serves as an on-off molecular switch through its alternation between the GDP-bound and GTP-bound forms. 相似文献
7.
We have here studied the role of cholesterol in transport of ricin from endosomes to the Golgi apparatus. Ricin is endocytosed even when cells are depleted for cholesterol by using methyl-beta-cyclodextrin (m beta CD). However, as here shown, the intracellular transport of ricin from endosomes to the Golgi apparatus, measured by quantifying sulfation of a modified ricin molecule, is strongly inhibited when the cholesterol content of the cell is reduced. On the other hand, increasing the level of cholesterol by treating cells with mbetaCD saturated with cholesterol (m beta CD/chol) reduced the intracellular transport of ricin to the Golgi apparatus even more strongly. The intracellular transport routes affected include both Rab9-independent and Rab9-dependent pathways to the Golgi apparatus, since both sulfation of ricin after induced expression of mutant Rab9 (mRab9) to inhibit late endosome to Golgi transport and sulfation of a modified mannose 6-phosphate receptor (M6PR) were inhibited after removal or addition of cholesterol. Furthermore, the structure of the Golgi apparatus was affected by increased levels of cholesterol, as visualized by pronounced vesiculation and formation of smaller stacks. Thus, our results indicate that transport of ricin from endosomes to the Golgi apparatus is influenced by the cholesterol content of the cell. 相似文献
8.
The GRIP domain - a novel Golgi-targeting domain found in several coiled-coil proteins 总被引:13,自引:0,他引:13
Many large coiled-coil proteins are being found associated peripherally with the cytoplasmic face of the organelles of the secretory pathway. Various roles have been proposed for these proteins, including the docking of donor vesicles or organelles to an acceptor organelle prior to fusion, and, in the case of the Golgi apparatus, the stacking of the cisternae [1] [2] [3] [4] [5]. Such critical roles require accurate recruitment to the correct organelle. For the endosomal coiled-coil protein EEA1, targeting requires a carboxy-terminal FYVE domain, which interacts with Rab5 and phosphatidylinositol 3-phosphate (PI(3)P), whereas the Golgi protein GM130 interacts with Golgi membranes via the protein GRASP65 [3] [6] [7]. In this paper, we show that two other mammalian Golgi coiled-coil proteins, golgin-245/p230 and golgin-97, have a conserved domain of about 50 amino acids at their carboxyl termini. This 'GRIP' domain is also found at the carboxyl terminus of several other large coiled-coiled proteins of unknown function, including two human proteins and proteins in the genomes of Caenorhabditis elegans and yeasts. The GRIP domains from several of these proteins, including that from the yeast protein Imh1p, were sufficient to specify Golgi targeting in mammalian cells when fused to green fluorescent protein (GFP). This result suggests that this small domain functions to recruit specific coiled-coil proteins to the Golgi by recognising a determinant that has been well conserved in eukaryotic evolution. 相似文献
9.
Dynactin is a multisubunit protein complex required for the activity of dynein in diverse intracellular motility processes, including membrane transport. Dynactin can bind to vesicles and liposomes containing acidic phospholipids, but general properties such as this are unlikely to explain the regulated recruitment of dynactin to specific sites on organelle membranes. Additional factors must therefore exist to control this process. Candidates for these factors are the Rab GTPases, which function in the tethering of vesicles to their target organelle prior to membrane fusion. In particular, Rab27a tethers melanosomes to the actin cytoskeleton. Other Rabs have been implicated in microtubule-dependent organelle motility; Rab7 controls lysosomal transport, and Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. We demonstrate that dynactin binds to Rab6 and shows a Rab6-dependent recruitment to Golgi membranes. Other Golgi Rabs do not bind to dynactin and are unable to support its recruitment to membranes. Rab6 therefore functions as a specificity or tethering factor controlling the recruitment of dynactin to membranes. 相似文献
10.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD. 相似文献
11.
Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the Rac1 GTPase 总被引:1,自引:0,他引:1
Chronic gastric infection with the Gram-negative bacterium Helicobacter pylori is a major contributing factor in the development of duodenal ulcers and is believed to be a significant risk factor in the development of gastric tumors. The VacA cytotoxin of H. pylori is a 90-kDa secreted protein that forms trans-membrane ion channels. In epithelial cells, VacA activity is associated with the rapid formation of acidic vacuoles enriched for late endosomal and lysosomal markers. Rac1 is a member of the Rho family of small GTP-binding proteins that regulate reorganization of the actin cytoskeleton and intracellular signal transduction and are being shown increasingly to play a role in membrane trafficking events. In this study we report that: (i) green fluorescent-tagged Rac1 localizes around the perimeter of the vacuoles induced by VacA; (ii) expression of dominant negative Rac1 in epithelial cells inhibits vacuole formation; (iii) expression of constitutively active Rac1 potentiates the activity of VacA. Taken together, these data demonstrate a role for Rac1 in the regulation of VacA activity. 相似文献
12.
13.
The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP 总被引:6,自引:0,他引:6
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane. 相似文献
14.
BACE1 (β-site β-amyloid precursor protein (APP)-cleaving enzyme 1) mediates the first proteolytic cleavage of APP, leading to amyloid β-peptide (Aβ) production. It has been reported that BACE1 intracellular trafficking, in particular endosome-to-TGN sorting, is mediated by adaptor complexes, such as retromer and Golgi-localized γ-ear-containing ARF-binding proteins (GGAs). Here we investigated whether sortilin, a Vps10p domain-sorting receptor believed to participate in retromer-mediated transport of select membrane cargoes, contributes to the subcellular trafficking and activity of BACE1. Our initial studies revealed increased levels of sortilin in post-mortem brain tissue of AD patients and that overexpression of sortilin leads to increased BACE1-mediated cleavage of APP in cultured cells. In contrast, RNAi suppression of sortilin results in decreased BACE1-mediated cleavage of APP. We also found that sortilin interacts with BACE1 and that a sortilin construct lacking its cytoplasmic domain, which contains putative retromer sorting motifs, remains bound to BACE1. However, expression of this truncated sortilin redistributes BACE1 from the trans-Golgi network to the endosomes and substantially reduces the retrograde trafficking of BACE1. Site-directed mutagenesis and chimera experiments reveal that the cytoplasmic tail of sortilin, but not those from other VPS10p domain receptors (e.g. SorCs1b and SorLA), plays a unique role in BACE1 trafficking. Our studies suggest a new function for sortilin as a modulator of BACE1 retrograde trafficking and subsequent generation of Aβ. 相似文献
15.
The Drosophila larval tracheal system consists of a highly branched tubular organ that becomes interconnected by migration-fusion events during embryonic development. Fusion cells at the tip of each branch guide migration, adhere, and then undergo extensive remodeling as the tracheal lumen extends between the two branches. The Drosophila dead end gene is expressed in fusion cells, and encodes an Arf-like3 GTPase. Analyses of dead end RNAi and mutant embryos reveal that the lumen fails to connect between the two branches. Expression of a constitutively active form of Dead end in S2 cells reveals that it influences the state of actin polymerization, and is present on particles that traffic along actin/microtubule-containing processes. Imaging experiments in vivo reveal that Dead end-containing vesicles are associated with recycling endosomes and the exocyst, and control exocyst localization in fusion cells. These results indicate that the Dead end GTPase plays an important role in trafficking membrane components involved in tracheal fusion cell morphogenesis and lumenal development. 相似文献
16.
17.
P. Y. Mak D. H. Mak H. Mu Y. Shi P. Ruvolo V. Ruvolo R. Jacamo J. K. Burks W. Wei X. Huang S. M. Kornblau M. Andreeff B. Z. Carter 《Apoptosis : an international journal on programmed cell death》2014,19(4):698-707
The apoptosis repressor with caspase recruitment domain (ARC) protein is known to suppress both intrinsic and extrinsic apoptosis. We previously reported that ARC expression is a strong, independent adverse prognostic factor in acute myeloid leukemia (AML). Here, we investigated the regulation and role of ARC in AML. ARC expression is upregulated in AML cells co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) and suppressed by inhibition of MAPK and PI3K signaling. AML patient samples with RAS mutations (N = 64) expressed significantly higher levels of ARC than samples without RAS mutations (N = 371) (P = 0.016). ARC overexpression protected and ARC knockdown sensitized AML cells to cytarabine and to agents that selectively induce intrinsic (ABT-737) or extrinsic (TNF-related apoptosis inducing ligand) apoptosis. NOD–SCID mice harboring ARC-overexpressing KG-1 cells had significantly shorter survival than mice injected with control cells (median 84 vs 111 days) and significantly fewer leukemia cells were present when NOD/SCID IL2Rγ null mice were injected with ARC knockdown as compared to control Molm13 cells (P = 0.005 and 0.03 at 2 and 3 weeks, respectively). Together, these findings demonstrate that MSCs regulate ARC in AML through activation of MAPK and PI3K signaling pathways. ARC confers drug resistance and survival advantage to AML in vitro and in vivo, suggesting ARC as a novel target in AML therapy. 相似文献
18.
The development of tubular organs often involves the hollowing of cells into a torus (doughnut shape), as observed in blood vessel formation in vertebrates and tracheal development in insects. During the fusion of Drosophila tracheal branches, fusion cells located at the tip of migrating branches contact each other and form intracellular luminal cavities on opposite sides of the cells that open to connect the tubule lumens. This process involves the intracellular fusion of plasma membranes associated with microtubule tracks. Here, we studied the function of an evolutionarily conserved small GTPase, Arf-like 3, in branch fusion. Arf-like 3 is N-terminally acetylated, and associates with both intracellular vesicles and microtubules. In Arf-like 3 mutants, the cell adhesion of fusion cells, specification of apical membrane domains, and secretion of luminal extracellular matrix proceeded normally, but the luminal cavities did not open due to the failure of intracellular fusion of the plasma membranes. We present evidence that the Arf-like 3 mutation impairs the localized assembly of the exocyst complex, suggesting that the targeting of exocytosis machinery to specific apical domains is the key step in converting the plasma membrane topology in fusion cells. 相似文献
19.
Scholz RP Gustafsson JO Hoffmann P Jaiswal M Ahmadian MR Eisler SA Erlmann P Schmid S Hausser A Olayioye MA 《Experimental cell research》2011,(4):496-503
Deleted in liver cancer 1 (DLC1) is a tumor suppressor protein that is frequently downregulated in various tumor types. DLC1 contains a Rho GTPase activating protein (GAP) domain that appears to be required for its tumor suppressive functions. Little is known about the molecular mechanisms that regulate DLC1. By mass spectrometry we have mapped a novel phosphorylation site within the DLC1 GAP domain on serine 807. Using a phospho-S807-specific antibody, our results identify protein kinase D (PKD) to phosphorylate this site in DLC1 in intact cells. Although phosphorylation on serine 807 did not directly impact on in vitro GAP activity, a DLC1 serine-to-alanine exchange mutant inhibited colony formation more potently than the wild type protein. Our results thus show that PKD-mediated phosphorylation of DLC1 on serine 807 negatively regulates DLC1 cellular function. 相似文献
20.
Uncoupling proteins 1 and 3 are regulated differently 总被引:3,自引:0,他引:3
Using a heterologous yeast expression system, we have previously found a marked discordance between the effects of uncoupling protein (UCP) 1 and UCP3L on basal O(2) consumption in whole yeast versus isolated mitochondria. In whole yeast, UCP3L produces a greater stimulation of basal O(2) consumption, while in isolated mitochondria, UCP1 produces a much greater effect. As shown previously and in this report, UCP3L, in contrast to UCP1, is not inhibited by purine nucleotides. In the present study, we addressed two hypothetical mechanisms that could account for the observed discordance: (i) in whole yeast, purine nucleotides inhibit UCP1 but not UCP3L and (ii) preparations of isolated mitochondria lack an activator of UCP3L that is normally present in vivo. By use of a mutant of UCP1 that lacks purine nucleotide inhibition, it is demonstrated that cytosolic concentrations of purine nucleotides present in yeast effectively inhibit UCP1 activity. This suggests that the lower activity of UCP1 compared to UCP3L in whole yeast is due to purine nucleotide inhibition of UCP1 but not UCP3L. As potential activators of UCP3L we tested free fatty acids in whole yeast and isolated mitochondria. While UCP1 was strongly activated by free fatty acids, no stimulatory effect on UCP3L was observed. In summary, this study indicates that UCP1 and UCP3L differ in their regulation by purine nucleotides and free fatty acids. This different regulation may be related to different physiological functions of the two proteins. 相似文献