首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To identify host factors that regulate susceptibility to Tobacco mosaic virus (TMV), 14 Arabidopsis thaliana ecotypes were screened for their ability to support TMV systemic movement. The susceptibility phenotypes observed included one ecotype that permitted rapid TMV movement accompanied by symptoms, nine ecotypes that allowed a slower intermediate rate of systemic movement without symptoms, and four ecotypes that allowed little or no systemic TMV movement. Molecular comparisons between ecotypes representing the rapid (Shahdara), intermediate (Col-1), and slow (Tsu-1) movement phenotypes revealed a positive correlation between the ability of TMV to move cell to cell and its speed of systemic movement. Additionally, protoplasts prepared from all three ecotypes supported similar levels of TMV replication, indicating that viral replication did not account for differences in systemic movement. Furthermore, induction of the pathogenesis-related genes PR-1 and PR-5 occurred only in the highly susceptible ecotype Shahdara, demonstrating that reduced local and systemic movement in Col-1 and Tsu-1 was not due to the activation of known host defense responses. Genetic analysis of F2 progeny derived from crosses made between Shahdara and Tsu-1 or Col-1 and Tsu-1 showed the faster cell-to-cell movement phenotypes of Shahdara and Col-1 segregated as single dominant genes. In addition, the Shahdara symptom phenotype segregated independently as a single recessive gene. Taken together, these findings suggest that, within Arabidopsis ecotypes, at least two genes modulate susceptibility to TMV.  相似文献   

2.
The responses of a collection of Arabidopsis thaliana ecotypes to mechanical inoculation with turnip mosaic potyvirus were assessed. The virus induced characteristic severe symptoms of infection in systemically infected plants. Resistance was found in four ecotypes: Bay-0, Di-0, Er-0, and Or-0. Enzyme-linked immunosorbent assay results of the resistant ecotypes suggested that ecotypes Di-0, Er-0, and Or-0 actually consist of mixed genotypes with resistances acting at different levels in the virus life cycle. Another form of resistance was found in ecotype Bay-0, for which several lines of evidence indicated an interference with viral cell-to-cell movement in the inoculated leaves.  相似文献   

3.
Sato M  Watanabe Y 《Uirusu》2006,56(2):155-163
Virus infection is established when viral proteins can interact with host factors to execute replication and/or cell-to-cell movement. Even after the virus infection has started, host resistance reactions, if trigged, would suppress further virus propagation. We would like to introduce what we understand about host factors as determinants of infection establishment and as key resistance molecules. Genome-wide information of Arabidopsis is providing us much information about such host factors involved in virus infection.  相似文献   

4.
Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.  相似文献   

5.
Plant infection by a virus is a complex process influenced by virus‐encoded factors and host components which support replication and movement. Critical factors for a successful tobamovirus infection are the viral movement protein (MP) and the host pectin methylesterase (PME), an important plant counterpart that cooperates with MP to sustain viral spread. The activity of PME is modulated by endogenous protein inhibitors (pectin methylesterase inhibitors, PMEIs). PMEIs are targeted to the extracellular matrix and typically inhibit plant PMEs by forming a specific and stable stoichiometric 1:1 complex. PMEIs counteract the action of plant PMEs and therefore may affect plant susceptibility to virus. To test this hypothesis, we overexpressed genes encoding two well‐characterized PMEIs in tobacco and Arabidopsis plants. Here, we report that, in tobacco plants constitutively expressing a PMEI from Actinidia chinensis (AcPMEI), systemic movement of Tobacco mosaic virus (TMV) is limited and viral symptoms are reduced. A delayed movement of Turnip vein clearing virus (TVCV) and a reduced susceptibility to the virus were also observed in Arabidopsis plants overexpressing AtPMEI‐2. Our results provide evidence that PMEIs are able to limit tobamovirus movement and to reduce plant susceptibility to the virus.  相似文献   

6.
Systemic infections of plants by viruses require that viruses modify host cells in order to facilitate infections. These modifications include induction of host factors required for replication, propagation and movement, and suppression of host defense responses, which are likely to be associated with changes in host gene expression. Past studies of the effects of viral infection on gene expression in susceptible hosts have been limited to only a handful of genes. To gain broader insight into the responses elicited by viruses in susceptible hosts, high-density oligonucleotide probe microarray technology was used. Arabidopsis leaves were either mock inoculated or inoculated with cucumber mosaic cucumovirus, oil seed rape tobamovirus, turnip vein clearing tobamovirus, potato virus X potexvirus, or turnip mosaic potyvirus. Inoculated leaves were collected at 1, 2, 4, and 5 days after inoculation, total RNA was isolated, and samples were hybridized to Arabidopsis GeneChip microarrays (Affymetrix). Microarray hybridization revealed co-ordinated changes in gene expression in response to infection by diverse viruses. These changes include virus-general and virus-specific alterations in the expression of genes associated with distinct defense or stress responses. Analyses of the promoters of these genes further suggest that diverse RNA viruses elicit common responses in susceptible plant hosts through signaling pathways that have not been previously characterized.  相似文献   

7.
The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.  相似文献   

8.
Mechanical inoculation ofArabidopsis thaliana ecotype Columbia with tomato spotted wilt virus led to viral replication and spread as determined by dot blot and ELISA analysis. Severe symptoms were observed three to four weeks post-inoculation. Early symptoms were manifested as chlorotic spots on uninoculated leaves. Later in the infection process, some plants showed complete chlorosis and wilting prior to bolting. Bolts that were developed by infected plants were chlorotic and deformed. These preliminary results suggest thatA. thaliana could become a model system for the genetic analysis of host factors required for the replication of viruses in the family Bunyaviridae, which includes viruses that cause important diseases of both plants and animals.  相似文献   

9.
The existence of genetic variation for resistance in host populations is assumed to be essential to the spread of an emerging virus. Models predict that the rate of spread slows down with the increasing frequency and higher diversity of resistance alleles in the host population. We have been using the experimental pathosystem Arabidopsis thaliana—tobacco etch potyvirus (TEV) to explore the interplay between genetic variation in host''s susceptibility and virus diversity. We have recently shown that TEV populations evolving in A. thaliana ecotypes that differ in susceptibility to infection gained within-host fitness, virulence and infectivity in a manner compatible with a gene-for-gene model of host–parasite interactions: hard-to-infect ecotypes were infected by generalist viruses, whereas easy-to-infect ecotypes were infected by every virus. We characterized the genomes of the evolved viruses and found cases of host-driven convergent mutations. To gain further insights in the mechanistic basis of this gene-for-gene model, we have generated all viral mutations individually as well as in specific combinations and tested their within-host fitness effects across ecotypes. Most of these mutations were deleterious or neutral in their local ecotype and only a very reduced number had a host-specific beneficial effect. We conclude that most of the mutations fixed during the evolution experiment were so by drift or by selective sweeps along with the selected driver mutation. In addition, we evaluated the ruggedness of the underlying adaptive fitness landscape and found that mutational effects were mostly multiplicative, with few cases of significant epistasis.  相似文献   

10.
植物病毒在细胞间转运的机理探讨   总被引:1,自引:0,他引:1  
植物病毒在寄主体内的移动包括细胞间转运和系统性转运两个部分。在这两个过程中,如何有效地利用和修饰胞间连丝,是病毒成功侵染的关键。病毒通过编码运动蛋白与寄主因子互作靶定于细胞质膜,然后通过一系列复杂机制修饰胞间连丝从而顺利完成细胞间转运。综述了植物病毒在细胞间转运过程中与寄主发生的一系列互作,着重阐述了病毒与胞间连丝之间互作的机制,旨在为相关研究工作提供参考。  相似文献   

11.
Plant virus genome replication and movement is dependent on host resources and factors. However, plants respond to virus infection through several mechanisms, such as autophagy, ubiquitination, mRNA decay and gene silencing, that target viral components. Viral factors work in synchrony with pro-viral host factors during the infection cycle and are targeted by antiviral responses. Accordingly, establishment of virus infection is genetically determined by the availability of the pro-viral factors necessary for genome replication and movement, and by the balance between plant defence and viral suppression of defence responses. Sequential requirement of pro-viral factors and the antagonistic activity of antiviral factors suggest a two-step model to explain plant–virus interactions. At each step of the infection process, host factors with antiviral activity have been identified. Here we review our current understanding of host factors with antiviral activity against plant viruses.  相似文献   

12.
13.
14.
15.
16.
Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways.  相似文献   

17.
Sequence analysis of a newly identified polyubiquitin gene (UBQ13) from the Columbia ecotype of Arabidopsis thaliana revealed that the gene contained a 3.9-kb insertion in the coding region. All subclones of the 3.9-kb insert hybridized to isolated mitochondrial DNA. The insert was found to consist of at least two, possibly three, distinct DNA segments from the mitochondrial genome. A 590-bp region of the insert is nearly identical to the Arabidopsis mitochondrial nad1 gene. UBQ13 restriction fragments in total cellular DNA from ecotypes Ler, No-0, Be-0, WS, and RLD were identified and, with the exception of Be-0, their sizes were equivalent to that predicted from the corresponding ecotype Columbia UBQ13 restriction fragment without the mitochondrial insert. Isolation by polymerase chain reaction and sequence determination of UBQ13 sequences from the other ecotypes showed that all lacked the mitochondrial insert. All ecotypes examined, except Columbia, contain intact open reading frames in the region of the insert, including four ubiquitin codons which Columbia lacks. This indicates that the mitochondrial DNA in UBQ13 in ecotype Columbia is the result of an integration event that occurred after speciation of Arabidopsis rather than a deletion event that occurred in all ecotypes except Columbia. This stable movement of mitochondrial DNA to the nucleus is so recent that there are few nucleotide changes subsequent to the transfer event. This allows for precise analysis of the sequences involved and elucidation of the possible mechanism. The presence of intron sequences in the transferred nucleic acid indicates that DNA was the transfer intermediate. The lack of sequence identity between the integrating sequence and the target site, represented by the other Arabidopsis ecotypes, suggests that integration occurred via nonhomologus recombination. This nuclear/organellar gene transfer event is strikingly similar to the experimentally accessible process of nuclear integration of introduced heterologous DNA.  相似文献   

18.
《Journal of molecular biology》2013,425(24):4857-4871
Human cytomegalovirus (HCMV) is a member of the β-herpesvirus family that invariably occupies hosts for life despite a consistent multi-pronged antiviral immune response that targets the infection. This persistence is enabled by the large viral genome that encodes factors conferring a wide assortment of sophisticated, often redundant phenotypes that disable or otherwise manipulate impactful immune effector processes. The type I interferon system represents a first line of host defense against infecting viruses. The physiological reactions induced by secreted interferon act to effectively block replication of a broad spectrum of virus types, including HCMV. As such, the virus must exhibit counteractive mechanisms to these responses that involve their inhibition, tolerance, or re-purposing. The goal of this review is to describe the impact of the type I interferon system on HCMV replication and to showcase the number and diversity of strategies employed by the virus that allow infection of hosts in the presence of interferon-dependent activity.  相似文献   

19.
Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus able to infect Arabidopsis thaliana. To establish a TYMV infection system in Arabidopsis cell culture, TYMV replicons with the capsid protein gene replaced by a reporter gene expressing the Sh ble protein conferring zeocin resistance were used to transfect Arabidopsis cells. Zeocin-resistant Arabidopsis calli were used to generate a suspension cell culture. Detection of viral proteins and RNAs after 18 months in culture demonstrated persistent replication of the replicon. The Arabidopsis cell culture yielded soluble, active replication complexes, providing a useful tool to study host factors involved in TYMV replication.  相似文献   

20.
This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV‐At17b), adapted to Arabidopsis thaliana ecotype Ler‐0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host‐driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard‐to‐infect ecotypes were infected by generalist viruses whereas easy‐to‐infect ecotypes were infected by all viruses, as predicted by a gene‐for‐gene model of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号