首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The human adult alpha globin genes, alpha 2 and alpha 1, are contained within two tandemly arranged duplication units. Each unit spans 4 kb of DNA, and contains three homology blocks (X, Y, Z) separated by non-homologous sequences. Segmental DNA recombination processes between the two units have resulted in high frequencies of two types of deletions in certain human populations, each deletion removing one alpha globin gene from chromosome 16, (alpha-thalassemia 2). In order to study the molecular mechanisms of alpha-thalassemia 2, and of homologous DNA recombination in general in mammalian cells, we have reconstructed these two alpha-thalassemia 2 genotypes in monkey cells. The two duplication units have been cloned in an SV40 origin-containing vector, and transfected into COS 7 cells. Newly replicated plasmid DNA was isolated and analyzed by Southern blot hybridization. Homologous DNA recombination occurs with high frequencies (10-20% per kb of homology), and this generates both types of alpha-thalassemia 2 deletions on the episomes in the monkey cells. Removal of the 5' end of either one, or both, of the X blocks prior to DNA transfection affects the relative frequencies of the two alpha-thalassemia 2 genotypes in a novel way. We consider and discuss these results in terms of several alternative models. Our data suggest the existence of hot spot(s) for initiation of homologous DNA recombination, or recombination promoting element(s), in a specific region of the human adult alpha globin locus. A DNA sequence that defines the boundaries of the two duplication units, and has been implicated in the initiation of gene conversion of the two X blocks, is contained within this region.  相似文献   

2.
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.  相似文献   

3.
The Eb gene of the mouse major histocompatibility complex (MHC) contains a well-documented hotspot of recombination. Twelve cases of intra-Eb recombination derived from the b, d, k and s alleles of the Eb gene were sequenced to more precisely position the sites of meiotic recombination. This analysis was based on positioning recombination breakpoints between nucleotide polymorphisms found in the sequences of parental haplotypes. All twelve cases of recombination mapped within the second intron of the Eb gene. Six of these recombinants, involving the k and s haplotypes, mapped to two adjoining DNA segments of 394 and 955 base pairs (bp) in the 3 half of the intron. In an additional two cases derived by crossing over between the d and s alleles, breakpoints were positioned to adjoining segments of 28 and 433 bp, also in the 3 half of the intron. Finally, four b versus k recombinants were mapped to non-contiguous segments of DNA covering 2.9 kb and 1005 bp of the intron. An analysis of the map positions of crossover breakpoints defined in this study suggests that the second intron of the Eb gene contains a recombinational hotspot of approximately 800–1000 bp which contains at least two closely linked recombinationally active sites or segments. Further examination of the sequence data also suggests that the postulated location for the recombinational hotspot corresponds almost precisely to an 812 bp sequence that shows nucleotide sequence similarity to the MT family of middle repetitive DNA.  相似文献   

4.
Delmas S  Matic I 《DNA Repair》2005,4(2):221-229
We studied how DNA divergence between recombining DNAs and the mismatch repair system modulate the SOS response in Escherichia coli. The observed positive log-linear correlation between SOS induction and DNA divergence, and the negative correlation between SOS induction and frequency of recombination, suggest that the level of SOS induction precisely reflects the difficulty of RecA protein to initiate a productive strand exchange process. Our results suggest that the mismatch repair system could contribute to this SOS induction more by affecting the RecA-catalyzed homology search than by acting on mismatched recombination intermediates. The propensity of the recombination machinery to promote recombination between the blocks of sequences with the highest identity results in the increasing ratios of merodiploids (partial diploids) over genuine recombinants (homologous replacements) with increasing DNA divergence. We discuss the role of molecular mechanisms involved in the control of the recombination between diverged DNA sequences in the maintenance of genomic stability and genome evolution.  相似文献   

5.
We have cloned cDNA copies of in vitro adenylated 7S RNA of HeLa cells. The most representative clones in the library contain DNA fragments copied from the 7SL and 7SK small RNAs. The two classes of recombinants share no homology. The 7SL RNA contains at the 5' end of the molecule sequences homologous to the Alu sequence family. Hybridization to human genomic DNA shows that the 7SL and 7SK clones are homologous to two different families of repetitive sequences.  相似文献   

6.
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.  相似文献   

7.
Integrative recombination of bacteriophage lambda occurs by two sequential, reciprocal strand exchanges at specific positions within the attachment sites. Both exchanges are promoted by the lambda Int protein; the first forms a Holliday structure, and the second resolves it to recombinant products. Recombination requires sequence homology within the 7 bp 'overlap' region that separates the two points of strand exchange. To see if homology promotes the second strand exchange, we constructed attachment site Holliday structures by annealing DNA strands and then assayed Int-promoted resolution. Holliday structures corresponding to strand exchange between sites with homologous overlap regions were efficiently resolved to give mixtures of recombinants and parents. Holliday structures corresponding to exchanges between heterologous sites fell into two classes. Members of the first class, in which heterology limited but did not completely prevent migration of the branchpoint within the overlap region, were resolved efficiently and preferentially to parental molecules. We propose that resolution to recombinants occurs only if homology allows branch migration from the first to the second exchange site. Members of the second class, in which heterology constrained the branchpoint within an Int binding site, were resolved poorly. We suggest that Holliday structures that have a branchpoint within an Int binding site are poor substrates for Int.  相似文献   

8.
Mammalian cells are able to repair chromosomal double-strand breaks (DSBs) both by homologous recombination and by mechanisms that require little or no homology. Although spontaneous homologous recombination is rare, DSBs will stimulate recombination by 2 to 3 orders of magnitude when homology is provided either from exogenous DNA in gene-targeting experiments or from a repeated chromosomal sequence. Using a gene-targeting assay in mouse embryonic stem cells, we now investigate the effect of heterology on recombinational repair of DSBs. Cells were cotransfected with an endonuclease expression plasmid to induce chromosomal DSBs and with substrates containing up to 1.2% heterology from which to repair the DSBs. We find that heterology decreases the efficiency of recombinational repair, with 1.2% sequence divergence resulting in an approximately sixfold reduction in recombination. Gene conversion tract lengths were examined in 80 recombinants. Relatively short gene conversion tracts were observed, with 80% of the recombinants having tracts of 58 bp or less. These results suggest that chromosome ends in mammalian cells are generally protected from extensive degradation prior to recombination. Gene conversion tracts that were long (up to 511 bp) were continuous, i.e., they contained an uninterrupted incorporation of the silent mutations. This continuity suggests that these long tracts arose from extensive degradation of the ends or from formation of heteroduplex DNA which is corrected with a strong bias in the direction of the unbroken strand.  相似文献   

9.
We have investigated the role of DNA ends during gap repair by homologous recombination. Mouse cells were transfected with a gapped plasmid carrying distinctive ends: on one side mouse LINE-1 repetitive sequences (LlMd-A2), and on the other rat LINE-1 sequences (LlRn-3). The gap could be repaired by homologous recombination with endogenous mouse genomic LINE-1 elements, which are on average 95% and 85% homologous to LlMd-A2 and LlRn-3 ends, respectively. Both LlMd-A2 and LlRn-3 ends were found to initiate gap repair with equal efficiency. However, there were two types of gap repair products – precise and imprecise – the occurrence of which appears to depend on which end had been used for initiation and thus which end was left available for subsequent steps in recombination. These results, together with sequence analysis of recombinants obtained with plasmids having either mouse or rat LINE-1 sequences flanking the gap, strongly suggest that the two DNA ends played different roles in recombinational gap repair. One end was used to initiate the gap repair process, while the other end was involved at later steps, in the resolution of the recombination event. Received: 16 April 1997 / Accepted: 24 June 1997  相似文献   

10.
Brome mosaic virus (BMV), a tripartite positive-stranded RNA virus of plants engineered to support intersegment RNA recombination, was used for the determination of sequence and structural requirements of homologous crossovers. A 60-nucleotide (nt) sequence, common between wild-type RNA2 and mutant RNA3, supported efficient repair (90%) of a modified 3' noncoding region in the RNA3 segment by homologous recombination with wild-type RNA2 3' noncoding sequences. Deletions within this sequence in RNA3 demonstrated that a nucleotide identity as short as 15 nt can support efficient homologous recombination events, while shorter (5-nt) sequence identity resulted in reduced recombination frequency (5%) within this region. Three or more mismatches within a downstream portion of the common 60-nt RNA3 sequence affected both the incidence of recombination and the distribution of crossover sites, suggesting that besides the length, the extent of sequence identity between two recombining BMV RNAs is an important factor in homologous recombination. Site-directed mutagenesis of the common sequence in RNA3 did not reveal a clear correlation between the stability of predicted secondary structures and recombination activity. This indicates that homologous recombination does not require similar secondary structures between two recombining RNAs at the sites of crossovers. Nearly 20% of homologous recombinants were imprecise (aberrant), containing either nucleotide mismatches, small deletions, or small insertions within the region of crossovers. This implies that homologous RNA recombination is not as accurate as proposed previously. Our results provide experimental evidence that the requirements and thus the mechanism of homologous recombination in BMV differ from those of previously described heteroduplex-mediated nonhomologous recombination (P. D. Nagy and J. J. Bujarski, Proc. Natl. Acad. Sci. USA 90:6390-6394, 1993).  相似文献   

11.
Recombination between chromosomal and extrachromosomal DNA sequences was analyzed by investigation of the recombinational rescue of a 1,018-base-pair (bp) segment of the T-antigen gene of simian virus 40 from the chromosome of monkey COS cells to two different, extrachromosomally replicating, simian virus 40 DNA molecules lacking this 1,018-bp sequence. The ratio of rescued to unrecombined virus was as high as 10(-3). The rescued molecules, detected optimally 5 to 9 days after transfection of COS cells, had completely recovered the 1,018-bp DNA segment from the chromosome. The recombination event is proposed to occur either by double reciprocal recombination or by gene conversion between the chromosomal T-antigen gene and the extrachromosomal molecules missing the 1,018-bp sequence.  相似文献   

12.
To study homologous recombination between repeated sequences in an in vitro simian virus 40 (SV40) replication system, we constructed a series of substrate DNAs that contain two identical fragments of monkey alpha-satellite repeats. Together with the SV40-pBR322 composite vector encoding Apr and Kmr, the DNAs also contain the Escherichia coli galactokinase gene (galK) positioned between two alpha-satellite fragments. The alpha-satellite sequence used consists of multiple units of tandem 172-bp sequences which differ by microheterogeneity. The substrate DNAs were incubated in an in vitro SV40 DNA replication system and used to transform the E. coli galK strain DH10B after digestion with DpnI. The number of E. coli galK Apr Kmr colonies which contain recombinant DNAs were determined, and their structures were analyzed. Products of equal and unequal crossovers between identical 172-bp sequences and between similar but not identical (homeologous) 172-bp sequences, respectively, were detected, although those of the equal crossover were predominant among all of the galK mutant recombinants. Similar products were also observed in the in vivo experiments with COS1 cells. The in vitro experiments showed that these recombinations were dependent on the presence of both the SV40 origin of DNA replication and SV40 large T antigen. Most of the recombinant DNAs were generated from newly synthesized DpnI-resistant DNAs. These results suggest that the homologous recombination observed in this SV40 system is associated with DNA replication and is suppressed by mismatches in heteroduplexes formed between similar but not identical sequences.  相似文献   

13.
Studies done in prokaryotes and eukaryotes have indicated that DNA sequence divergence decreases the frequency of homologous recombination. To determine which step(s) of homologous recombination is sensitive to DNA sequence divergence in mammalian cells we have used an assay that does not rely on the recovery of functional products. The assay is based on the acquisition by homologous recombination of endogenous LINE-1 sequences by exogenous LINE-1 sequences. In parallel experiments, we introduced into mouse cells two gapped exogenous LINE-1 sequences, one from the mouse, L1Md-A2, and the other from the rat, L1Rn-3. Although L1Rn-3 is on average less than 85% homologous to the LINE-1 elements of the mouse, the frequency of homologous recombination with endogenous LINE-1 elements obtained with L1Rn-3 was the same as the one obtained with L1Md-A2 which is on average 95% homologous to the LINE-1 elements of the mouse. The endogenous LINE-1 sequences rescued by L1Rn-3 were 8-18% divergent from L1Rn-3 sequences, whereas those rescued by L1Md-A2 were 2-5% divergent from L1Md-A2 sequences. The gap which had been introduced into the exogenous LINE-1 sequences had been precisely repaired in 50% of the recombinants obtained with L1Md-A2. None of the L1Rn-3 recombinants showed precise gap repair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The ability of a series of DNA-damaging agents to induce homologous intrachromosomal recombination between duplicated genes in the chromosome of mouse cells was investigated. The target cells were the thymidine kinase-deficient mouse L-cell strain 333M, which contains a single integrated copy of a plasmid with two herpes simplex virus thymidine kinase (Htk) genes, each containing an 8-base-pair XhoI linker inserted at a unique site. Expression of a functional Htk enzyme requires a productive recombinational event between the two nonfunctional genes. The spontaneous rate of recombination in this strain is 3 per 10(6) cells per generation. The agents tested represent physical carcinogens (UV and ionizing radiation), a simple alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine), an alkylating cross-linking agent (mitomycin C), and a reactive metabolite of a polycyclic aromatic hydrocarbon ((+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene [BPDE] ). The background frequency of tk+ recombinants in the untreated population averaged 18 X 10(-6) +/- 5 X 10(-6). Ionizing radiation had little or no effect on recombination; exposure to mitomycin C, N-methyl-N'-nitro-N-nitrosoguanidine, BPDE, or UV, at doses that lowered the survival to between 90 and 10% of the control, caused a dose-dependent increase in frequency of recombinants, reaching 50 X 10(-6) to 100 X 10(-6). No tk+ cells could be generated with a control cell line that contained only one mutant copy of the Htk gene. Molecular hybridization analysis showed that 85 to 90% of the tk+ recombinants retained the Htk gene duplication, consistent with nonreciprocal transfer of wild-type genetic information, gene conversion. In the rest, only a single copy of the Htk gene remained, reflecting a single reciprocal exchange within a chromatid or a single unequal exchange between sister chromatids. Each recombinant tested contained an XhoI-resistant (wild-type) Htk gene.  相似文献   

15.
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.  相似文献   

16.
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.  相似文献   

17.
AIMS: To investigate the key parameters controlling the exogenous methyl parathion hydrolase (MPH) gene mpd-targeting frequency at the ribosomal RNA operon (rrn) site of Sphingomonas species which has a wide range of biotechnological applications. METHODS AND RESULTS: Targeting vectors with different homology lengths and recipient target DNA with different homology identities were used to investigate the parameters controlling the targeting frequency at the Sphingomonas species rrn site. Targeting frequency decreased with the reduction of homology length, and the minimal size for normal homologous recombination was >100 bp. Homologous recombination could succeed even if there were 3-4% mismatches; however, targeting frequency decreased with increasing sequence divergence. The Red recombination system could increase the targeting frequency to some extent. Targeting of the mpd gene to the rrn site did not affect cell viability and resulted in an increase of MPH-specific activity in recombinants. CONCLUSIONS: Targeting frequency was affected by homology length, identity and the Red recombination system. The rrn site is a good target site for the expression of exogenous genes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work is useful as a foundation for a better understanding of recombination events involving homologous sequences and for the improved manipulation of Sphingomonas genes in biotechnological applications.  相似文献   

18.
We have determined the sequence of 2400 base pairs upstream from the human pseudo alpha globin (psi alpha) gene, and for comparison, 1100 base pairs of DNA within and upstream from the chimpanzee psi alpha gene. The region upstream from the promoter of the psi alpha gene shows no significant homology to the intergenic regions of the adult alpha 2 and alpha 1 globin genes. The chimpanzee gene has a coding defect in common with the human psi alpha gene, showing that the product of this gene, if any, was inactivated before the divergence of human and chimpanzee. However the chimpanzee gene contains a normal ATG initiation codon in contrast to the human gene which has GTG as the initiation codon. The psi alpha genes of both human and chimpanzee are flanked by the same Alu family member. The structure and position of this repeat have not been altered since the divergence of human and chimpanzee, and it is at least as well conserved as its immediate flanking sequence. Comparing human and chimpanzee, the 300 bp Alu repeat has accumulated only two base substitutions and one length mutation; the adjacent 300 bp flanking region has accumulated five base substitutions and twelve length mutations.  相似文献   

19.
Homologous chromosomes interact during meiosis by means of proteins involved in recombination and in the recognition and repair of mismatched base pairs. Recombination proteins bring homologous chromosomes or chromosomal regions together by facilitating the search for DNA homology and by catalyzing strand exchange between homologous molecules or regions. Mismatch recognition and repair proteins act as editors of recombination and appear to disrupt those DNA associations that contain mismatched base pairs. Thus, it may be that, as chromosomes diverge in their primary sequence and become increasingly polymorphic, recombinational interactions leading to chromosome pairing and recombination tend to be inhibited. Decreasing homologous interactions within and between chromosomes will clearly contribute to maintaing the integrity of individual chromosomes and may utimately lead, as a result of sterile meioses, to the reproductive isolation of closely related species.  相似文献   

20.
I. Matic  M. Radman    C. Rayssiguier 《Genetics》1994,136(1):17-26
To get more insight into the control of homologous recombination between diverged DNA by the Mut proteins of the long-patch mismatch repair system, we have studied interspecies Escherichia coli/Salmonella typhimurium recombination. Knowing that the same recombination pathway (RecABCD) is responsible for intraspecies and interspecies recombination, we have now studied the structure (replacement vs. addition-type or other rearrangement-type recombinants) of 81 interspecies recombinants obtained in conjugational crosses between E. coli donor and mutL, mutS, mutH, mutU or mut(+) S. typhimurium recipients. Taking advantage of high interspecies sequence divergence, a physical analysis was performed on one third of the E. coli Hfr genome, which was expected to be transferred to S. typhimurium F(-) recipients during 40 min before interruption of the mating. Probes specific for each species were hybridized on dot blots of genomic DNA, or on colonies, and the composition of the rrn operons was determined from purified genomic DNA. With very few exceptions, the structure of these interspecies recombinants corresponds to replacements of one continuous block of the recipient genome by the corresponding region of the donor genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号