首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of two pathogenic and one environmental serotype of Yersinia enterocolitica under acidic conditions and at 4 and 25°C was investigated. At both temperatures the maximum growth inhibitory pH depended on the acidulant used and was in the order acetic > lactic > citric > sulphuric. At the lower temperature the maximum growth inhibitory pH was 0.3-0.5 pH units higher than at 25°C. No difference was observed between the behaviour of pathogenic and environmental serotypes in this respect. Measurement of growth at a number of sub-optimal temperatures and pH values showed that the variation of growth rate with temperature could be represented by a square root plot. The effect of different pH values could be incorporated into the model by replacing the regression coefficient b by its relationship with pH. Values of maximum growth inhibitory pH derived from the model were in good agreement with experimental values with the exception of acetic acid.  相似文献   

2.
The survival of Yersinia enterocolitica at sub-optimal temperatures (0–23°C) and growth inhibitory pH values, achieved using a range of acidulants, was investigated. At a given pH, survival was greater the lower the temperature. Sulphuric and citric acids had lower bactericidal activity than acetic and lactic acids and in nearly all cases where the four acids could be compared at the same pH the order of bactericidal activity was acetic > lactic > citric > sulphuric. Attempts to model this behaviour by a negative square root relationship gave good correlation coefficients for plots of the square root of death rate against temperature at different combinations of pH and acidulant but so too did several other functions of death rate. The high coefficient of variation for T 0 determined from square root plots prevented construction of a combined temperature/pH model similar to that already described for growth.  相似文献   

3.
Yersinia enterocolitica O : 3 was studied throughout two central composite designs to define the effects of temperature, pH and salt concentration on bacterial growth. Mathematical models were established by response surface methodology. The impedimetric technique was evaluated for its rapidity and ability to produce detection times related to bacterial metabolism. Finally, predicted values derived from model equations were compared with observed values obtained by plate counts.  相似文献   

4.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HCl to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20 degrees, 10 degrees, 7 degrees and 4 degrees C for 21 d was in the ranges 4.18-4.36, 4.26-4.50, 4.36-4.83 and 4.42-4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/l acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/l citric acid adjusted to pH values between 4.1 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/l lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic greater than lactic greater than citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

5.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HC1 to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20°, 10°, 7° and 4°C for 21 d was in the ranges 4.18–4.36, 4.26–4.50, 4.36–4.83 and 4.42–4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/1 acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/1 citric acid adjusted to pH values between 41 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/1 lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic > lactic > citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

6.
Aims: To predict the risk factors for building infestation by Serpula lacrymans, which is one of the most destructive fungi causing timber decay in buildings. Methods and Results: The growth rate was assessed on malt extract agar media at temperatures between 1·5 and 45°C, at water activity (aw) over the range of 0·800–0·993 and at pH ranges from 1·5 to 11·0. The radial growth rate (μ) and the lag phase (λ) were estimated from the radial growth kinetics via the plots radius vs time. These parameters were then modelled as a function of the environmental factors tested. Models derived from the cardinal model (CM) were used to fit the experimental data and allowed an estimation of the optimal and limit values for fungal growth. Optimal growth rate occurred at 20°C, at high aw level (0·993) and at a pH range between 4·0 and 6·0. The strain effect on the temperature parameters was further evaluated using 14 strains of S. lacrymans. The robustness of the temperature model was validated on data sets measured in two different wood‐based media (Quercus robur L. and Picea abies). Conclusions: The two‐step procedure of exponential model with latency followed by the CM with inflection gives reliable predictions for the growth conditions of a filamentous fungus in our study. The procedure was validated for the study of abiotic factors on the growth rate of S. lacrymans. Significance and Impact of the Study: This work describes the usefulness of evaluating the effect of physico‐chemical factors on fungal growth in predictive building mycology. Consequently, the developed mathematical models for predicting fungal growth on a macroscopic scale can be used as a tool for risk assessment of timber decay in buildings.  相似文献   

7.
8.
The previously reported data set for the low temperature (5, 12 and 19°C) of Yersinia enterocolitica was expanded to include higher abusive temperature (28, 37 and 42°C). In addition to temperature, the data set included the effects and interactions of pH (4.5–8.5), sodium chloride (0.5-5%) and sodium nitrite (0-200 μg ml-1) on the aerobic growth of Y. enterocolitica in brain heart infusion broth. Growth curves were modeled by fitting viable count data to the Gompertz equation. Quadratic models of natural logarithm transformations of the Gompertz B and M values and the derived values for lag phase durations and generation times were obtained using response surface analyses. Predictions based on the models for B and M values were comparable to predictions based on the derived values. These revised models provide an expanded means for rapidly estimating how the bacterium is likely to respond to any combination of the four variables within the specified ranges.  相似文献   

9.
AIMS: Growth modes predicting the effect of pH (3.5-5.0), NaCl (2-10%), i.e. aw (0.937-0.970) and temperature (20-40 degrees C) on the colony growth rate of Monascus ruber, a fungus isolated from thermally-processed olives of the Conservolea variety, were developed on a solid culture medium. METHODS AND RESULTS: Fungal growth was measured as colony diameter on a daily basis. The primary predictive model of Baranyi was used to fit the growth data and estimate the maximum specific growth rates. Combined secondary predictive models were developed and comparatively evaluated based on polynomial, Davey, gamma concept and Rosso equations. The data-set was fitted successfully in all models. However, models with biological interpretable parameters (gamma concept and Rosso equation) were highly rated compared with the polynomial equation and Davey model and gave realistic cardinal pHs, temperatures and aw. CONCLUSIONS: The combined effect of temperature, pH and aw on growth responses of M. ruber could be satisfactorily predicted under the current experimental conditions, and the models examined could serve as tools for this purpose. SIGNIFICANCE AND IMPACT OF THE STUDY: The results can be successfully employed by the industry to predict the extent of fungal growth on table olives.  相似文献   

10.
This study examined the individual and combined effects of the selective agents normally present in Yersinia-selective agar (i.e. cefsulodin, irgasan and novobiocin) on the growth kinetics of plasmid-bearing (P+) and plasmid-cured (P-) Yersinia enterocolitica serotype O:3 at 25 and 37 degrees C. Growth studies were carried out in pure culture, and the data obtained were subjected to linear regression analysis to determine lag phase duration(s) and growth rates of the examined strains. In general, the presence of selective agents increased the duration of the lag phase at 37 degrees C, with longer lag phases noted in all cases in which two or more selective agents were present. Growth rates in CIN broth base (CIN NA) and CIN NA plus commercial supplement (SR 109) (CIN) were faster at 37 than 25 degrees C, but in some cultures of incomplete CIN NA broth with less than three supplements added, growth tended to be faster at 25 than 37 degrees C. Generally, plasmid-bearing strains grew slower than plasmid-cured strains in most media at 37 degrees C due to virulence plasmid expression retarding growth. In some instances at 37 degrees C, it was observed that the growth rates of both plasmid-bearing and plasmid-cured strains were comparable, indicating the influence of added selective agent/s negating any effects associated with virulence plasmid expression. The effects of selective agents, incubation temperature and virulence plasmid carriage on the growth kinetics of Y. enterocolitica are discussed.  相似文献   

11.
The effects of chlorine at varying pH, culture media and incubation temperatures on one type and two wild type strains of Yersinia enterocolitica were studied. Exposure to 1 and 5 mg 1-1 did not diminish viability, even after prolonged exposure. A level of 10 mg 1-1 was required to achieve a 5-log reduction in 120 s for the type strain and 80 s for the wild strains. There was an increase of more than 30% in the rate of disinfection with a 10°C rise, a remarkable increase in antimicrobial activity at pH 5-log reduction in 20 s, as well as marked neutralization of the effect in the presence of 0.1% peptone. Younger cells were more susceptible than older ones, and those from liquid medium more resistant than those from solid medium. Incubation temperature of a 24-h inoculum failed to show any influence. Lastly, there was a noteworthy demand for free chlorine by bacterial biomass, with agreement of the curve depicting the drop in free chlorine in the presence of inoculum with biphasic kinetics of survival curves.  相似文献   

12.
Aims: To evaluate and model the growth of Streptococcus iniae affect by temperatures (10–45°C), water activity (Aw; 0·995–0·957), and pH (5–8). Methods and Results: Temperatures, Aw, and pH were adjusted. The behaviour of S. iniae was studied and modelled. Growth curves were fitted by using logistic, Gompertz, and Baranyi models. The maximum growth rates obtained from the primary model were then modelled as a function of temperature, Aw, and pH using the Belehradek‐type models for secondary model. The optimum values for growth were found to be in the range of 35–40°C, Aw 0.995–1, and pH 6–7. The statistical characteristics of the models were validated by r2, mean square error, bias, and accuracy factors. The results of validation indicated that Baranyi model performed the best. Conclusions: The effect of temperature, Aw/NaCl, pH control of S. iniae in tilapia could be satisfactorily predicted under current experimental conditions, and the proposed models could serve as a tool for this purpose. Significance and Impact of the Study: The suggested predictive model can be used for risk assessment concerning S. iniae in tilapia.  相似文献   

13.
The effect of temperature on the growth rate, protein pattern and fatty acid composition of Yersinia enterocolitica strain W22703 pYV+, its plasmidless isogenic derivative W22703 pYV- and four recent field isolates was examined.
The growth rate was clearly influenced by presence or absence of the virulence plasmid: pYV- strains grew consistently faster than pYV+ strains. This difference in growth rate was high at 30–35°C, moderate at 1–10°C and 25°C, but hardly significant at 15–20°C.
Increasing the growth temperature above 25°C resulted in the induction of the 220 kDa virulence plasmid-encoded Yop1 protein. In the 1–20°C range no obvious temperature- or plasmid-related differences in protein patterns could be detected.
The fatty acid composition showed a clear temperature-dependent change: with all strains the degree of saturation was low at 1°C and gradually increased with raising temperatures. All strains had similar fatty acid patterns, except one of the field isolates which showed aberrant C16 : 1 and cyclic fatty acid contents in the 5–25°C and 15°C ranges respectively. With strain W22703, the presence or absence of the virulence plasmid did not significantly alter the fatty acid pattern.  相似文献   

14.
15.
Carbon dioxide (30 mmol/l) was shown to inhibit the growth of four strains of Yersinia enterocolitica grown separately in a simulated milk medium at 7°C and 60 rev/min for 4 d. This indicates that addition of CO2 to refrigerated raw milk supplies is likely to be a safe process with respect to that organism.  相似文献   

16.
In this report we describe a PCR strategy for the unambigous identification of biochemically presumptive typed Yersinia (Y.) enterocolitica. A total of 269 isolates belonging to ten species of the genus Yersinia were investigated. In a first PCR only isolates classified as Y. enterocolitica (n = 113) gave rise to a specific amplification resulting in a sensitivity and a specificity of 100%. By sequencing the 269 amplicons of a second pan-Yersinia PCR spanning a distinct 16S rRNA gene region, 20 different sequence clusters could be identified within the genus. By this, Y. enterocolitica isolates of American and European origin could be distinguished safely and already described sequence clusters of the species Y. frederiksenii were confirmed. New 16S rRNA gene sequence clusters were detected for the species Y. frederiksenii, Y. intermedia, Y. mollaretii, Y. aldovae, Y. kristensenii, and Y. rohdei.  相似文献   

17.
The bacteriostatic and bactericidal action of sodium chloride on 60 Y. pseudotuberculosis strains, 75 Y. enterocolitica strains and 158 urine-fermenting strains has been studied. A new specific feature of Y. pseudotuberculosis has been revealed: high sensitivity to sodium chloride. The suitability of the sodium chloride test has been shown for the identification of Yersinia and the differentiation of Y. pseudotuberculosis and Y. enterocolitica.  相似文献   

18.
Analysis of the pathogenicity of Yersinia enterocolitica was performed with an experimental model successfully produced in rabbits by intraduodenal inoculation with strains isolated from various sources. Pathogenic strains easily penetrated the epithelial linings of the intestinal mucous membrane into the target reticuloendothelial tissues of the intestine, such as the lamina propria and lymph follicles, where they multiplied within mononuclear cells and produced granuloma. Granuloma, in severe infections, underwent necrobiosis and sometimes progressed to ulceration accompanied by colony formation of the organisms. In mild infections, granulomatous lesions were localized in lymph follicles and never progressed to ulceration. Nonpathogenic strains were rapidly excreted without penetration of epithelial linings. Y. enterocolitica should be within the category of invasion type enteropathogenic bacteria such as Shigella and Salmonella. Pathogenic behavior of Y. enterocolitica is discussed in comparison with that of Shigella and Salmonella.  相似文献   

19.
The effect of culture growth phase on induction of the heat shock response in Yersinia enterocolitica and Listeria monocytogenes, was examined. Exponential or stationary preconditioned cultures were heat shocked and survivor numbers estimated using selective and overlay/resuscitation recovery techniques. The results indicate that prior heat shock induced increased heat resistance in both micro-organisms to higher heat treatments. Heat-shocked cells of each micro-organism were able to survive much longer than non-heat-shocked cells when heated at 55 degrees C. The size of the change in heat resistance between heat-shocked and non-heat-shocked cells was greatest for exponential cultures (X:X). Results indicate that the overall relative thermal resistance of each pathogen was dependent on cell growth phase. Stationary cultures (S:S) were significantly (P < 0.01) more thermotolerant than exponential cultures (X:X) under identical processing conditions. Under most conditions, the use of an overlay/resuscitation recovery medium resulted in higher D-values (P < 0.05) compared with a selective recovery medium.  相似文献   

20.
The inv gene encodes the protein invasin, which is the primary invasion factor for Yersinia enterocolitica in vitro and in vivo. Previous studies of Yersinia species have shown that inv expression and entry into mammalian cells are temperature regulated. Invasin production is reduced at the host temperature of 37°C as compared to production at ambient temperature; consequently, this study was initiated to determine whether other host environmental signals might induce inv expression at 37°C. An inv::phoA translational fusion was recombined on to the Y. enterocolitica chromosome by allelic exchange to monitor inv expression. Molecular characterization of expression of the wild-type inv gene and the inv phoA fusion showed that invasin is not produced until early stationary phase in bacteria grown at 23°C. Y. enterocolitica grown at 37°C and pH 5.5 showed levels of inv expression comparable to those observed in bacteria grown at 23 C. An increase in Na+ ions caused a slight increase in expression at 37 C. However, expression at 37°C was unaffected by anaerobiosis, growth’medium, calcium levels, or iron levels. Additionally, Y. enterocolitica expressed invasin in Peyer's patches two days after being introduced intragastrically into BALB/c mice. These results suggest that invasin expression in K enterocolitica may remain elevated eariy during interaction with the intestinal epithelium, a site at which invasin was shown to be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号