首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

2.
A combinatorial screening procedure was used for the selection of polymer precursors in the preparation of molecularly imprinted polymer (MIP), which is useful in the detection of the air pollution marker molecule benzo[a]pyrene (BAP). Molecular imprinting is a technique for the preparation of polymer materials with specific molecular recognition receptors. The preparation of imprinted polymers requires polymer precursors such as functional monomer, cross-linking monomer, solvent, an initiator of polymerization and thermal or UV radiation. A virtual library of functional monomers was prepared based on interaction binding scores computed using HyperChem Release 8.0 software. Initially, the possible minimum energy conformation of the monomers and BAP were optimized using the semi-empirical (PM3) quantum method. The binding energy between the functional monomer and the template (BAP) was computed using the Hartree-Fock (HF) method with 6-31 G basis set, which is an ab initio approach based on Moller-Plesset second order perturbation theory (MP2). From the computations, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were selected for preparation of BAP imprinted polymer. The larger interaction energy (ΔE) represents possibility of more affinity binding sites formation in the polymer, which provides high binding capacity. The theoretical predictions were complimented through adsorption experiments. There is a good agreement between experimental binding results and theoretical computations, which provides further evidence of the validity of the usefulness of computational screening procedures in the selection of appropriate MIP precursors in an experiment-free way.  相似文献   

3.
A molecularly imprinted polymer (MIP) has been prepared using levonorgestrel (LEV) as template. The polymer was synthesised in a non-covalent approach using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linking monomer via a free radical polymerization. An equivalent blank polymer was also synthesised in the absence of the template compound. Batch adsorption experiments were used to evaluate the binding affinity of the imprinted polymer. After packing MIP into a stainless steel column (150 mm x 4.6 mm i.d.), retention and elution of the template and related compounds were evaluated by high-performance liquid chromatography (HPLC). This LEV imprinted polymer was further applied for selective solid phase extraction (SPE) of LEV from human serum. It was confirmed that the binding ability of the prepared MIP for LEV was essentially sufficient in the presence of other compounds coexisting in serum sample. Therefore, as a selective and efficient solid phase material, LEV imprinted polymer has a high potential application in analysis of this steroidal hormone in clinical purposes.  相似文献   

4.
Molecular imprinting and solid phase extraction of flavonoid compounds   总被引:4,自引:0,他引:4  
Molecularly imprinted polymers (MIPs) for quercetin have been successfully prepared by a thermal polymerization method using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker, respectively. The obtained molecularly imprinted polymers were evaluated by HPLC using organic eluents, with respect to their selective recognition properties for quercetin and related compounds of the flavonoid class. Two equivalent control polymers, a blank polymer and a polymer imprinted with a structural analogous template, were synthesized, in order to confirm the obtained results. Furthermore, preliminary experiments confirm the applicability of the prepared MIPs for solid phase extraction (SPE), as rapid and facile clean-up of wine samples for HPLC analysis is an envisaged field of application. The successful preparation of molecularly imprinted polymers for flavones provides an innovative opportunity for the development of advanced separation materials, with applications in the field of wine and fermentation analysis.  相似文献   

5.
Direct rapid synthesis of MIP beads in SPE cartridges   总被引:1,自引:0,他引:1  
Selecting optimal compositions for non-covalent molecularly imprinted polymers (MIPs) and screening for appropriate rebinding conditions necessitates synthesising a large number of polymers. This is extremely labour-intensive and usually results in very limited "optimisation" in studies of MIPs. Here, a new method is proposed for rapid synthesis of MIPs in a beaded form that can be used directly in many different performance evaluation studies. The method is based on synthesis of spherical particles by suspension polymerisation in liquid fluorocarbon [Mayes, A., Mosbach, K., 1996. Molecularly imprinted polymer beads: suspension polymerisation using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 68, 3769-3774]. The polymers were directly polymerised under UV light in solid phase extraction (SPE) cartridges, then washed and extracted in the same cartridges where they had been synthesised, resulting in a rapid and automatable process that requires no transfer or manipulation of the polymer particles. The particles were similar in terms of size, morphology and functional performance to particles obtained by suspension polymerisation in fluorocarbon solvent using a conventional reactor. In this initial study, 36 polymers were synthesised to study the effect of a variation in the type and amount of four different functional monomers, methacrylic acid (MAA), acrylic acid (AA), hydroxyethyl methacrylate (HEMA) and 2-vinylpyridine (2-VPy), for the imprinting of propranolol and morphine. The performance of polymers synthesised using MAA was as expected, but those synthesised with AA as functional monomer showed more surprising rebinding properties as a function of monomer to cross-linker ratios, demonstrating the potential value of pragmatic synthesis and screening approaches to polymer optimisation.  相似文献   

6.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

7.
The performance of molecularly imprinted polymers (MIPs) is of interest to researchers in the field of analytical chemistry, and in the pharmaceutical and food industries. Because the choice of the functional monomer(s) plays a key role in the selectivity of a MIP, the synthesis of an effective, tight-binding MIP can be difficult and time-consuming, involving the evaluation of the binding performance of MIPs of many different compositions. In this study, we report an express method combining molecular imprinting and microcontact printing techniques to prepare a polymer thin film as an artificial antibody. In addition to the microcontact printing technique, isothermal titration of monomers to proteins stamps was investigated to screen the functional monomer for MIPs. Finally, the importance of the choice of cross-linking monomers in MIPs was studied, and these studies suggest that monomers containing an optimal length PEG spacer give higher imprinting effectiveness. Several model antigens (lysozyme, ribonuclease A and myoglobin) were adsorbed on a cover glasses that were pretreated with hexamethyldisilazane (HMDS). These protein stamps were then contacted with different monomer solutions (cross-linking monomers) on a glass slide substrate. Photopolymerization yielded the molecularly imprinted polymer. This technique, analogous to microcontact printing, allows for the rapid, parallel synthesis of MIPs of different compositions, and requires very small volumes of monomers (ca. 4 microL). The technique also avoids potential solubility problems with the molecular targets. Of several cross-linking monomers screened, tetraethyleneglycol dimethacrylate (TEGDMA) gave the most selective lysozyme binding, while polyethyleneglycol 400 dimethacrylate (PEG400DMA) were most selective for ribonuclease A and myoglobin.  相似文献   

8.
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for the MIP cartridges were studied. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. The limit of detection (LOD) and limit of quantification (LOQ) for tramadol in urine samples were 1.2 and 3.5 μg L−1, respectively. These limits for tramadol in plasma samples were 3.0 and 8.5 μg L−1, respectively. The recoveries for plasma and urine samples were higher than 91%.  相似文献   

9.
A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non‐imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non‐imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Molecularly imprinted polymers are highly stable and can be sterilised, making them ideal for use in biotransformation process. In this communication, we describe a novel application of molecularly imprinted polymers in an enzymatic reaction. The enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to give Z-L-Asp-L-Phe-OMe (Z-aspartame) was chosen as a model system to evaluate the applicability of using molecularly imprinted polymers to facilitate product formation. When the product-imprinted polymer is present, a considerable increase (40%) in product yield is obtained. Besides their use to enhance product yields, as demonstrated here, we suggest that imprinted polymers may also find use in the continuous removal of toxic compounds during biochemical reactions.  相似文献   

11.
Molecular imprints were prepared using L-phenylalanine anilide as the print molecule and methacrylic acid as the functional monomer. Methacrylic acid interacts ionically with the primary amine of the print molecule and via hydrogen bonding with the amide function. In the HPLC mode such polymers were shown to exhibit efficient enantiomeric resolution of a racemic mixture of the original print molecule. Enantiomeric resolution was shown to be dependent on the ratio of methacrylic acid to print molecule in the pre-polymerization mixture and specific for the presence of both print molecule and functional monomer. Further analyses showed the importance of both the primary amino and amide functions in the correct stereochemistry for recognition and enantiomeric resolution of compounds on such polymers. Other amide derivatives of amino acids including p-nitroanilides, beta-naphthylamides and amides were recognized by such polymers, and enantiomeric resolution was obtained for amide derivatives of amino acid ranging from alanine to tryptophan on a single polymer. The implications of these findings with respect to the mechanism of recognition and the ability to predict enantiomeric resolution of molecules on molecularly imprinted polymers will be discussed.  相似文献   

12.
A novel molecularly imprinted polymer (MIP) system selective for D-phenylalanine is described where polymerization is performed in aqueous solution. The unique polymer system comprises a hydrophobic moiety-selective functional monomer, polymerizable beta-cyclodextrin, an electrostatic interacting functional monomer, 2-acryloylamido-2-methylpropane sulfonic acid (AMPSA), and the crosslinking agent N,N'-diacryloylpiperazine. Chromatographic evaluation of polymer-ligand recognition characteristics demonstrated ligand selectivity by the MIP and that optimal recognition was achieved through a balance of hydrophobic and electrostatic ligand-polymer interactions, indicating that recognition in these systems is regulated by enthalpy-entropy compensation. The imprinting effect was shown to be sufficient to reverse the inherent selectivity of cyclodextrin for L-phenylalanine.  相似文献   

13.
Glutathione imprinted polymer was prepared using 1-vinyl imidazole and ethylene glycol dimethacrylate as the functional monomer and crosslinker, respectively, in dimethyl sulfoxide. The adsorption selectivity of glutathione-imprinted polymer was tested by reduced glutathione, oxidized glutathione, and L-Gly-Leu-Tyr in 30% phosphate buffer (0.01 M, pH 5.0)–70% acetonitrile and binding affinity values were compared. Reusability of molecularly imprinted polymer particles was also investigated. Molecularly imprinted polymer particles were found to be stable and to maintain glutathione adsorption capacity at 95% when washed with methanol–acetic acid (10%) after seven usages. Functional monomer 1-vinyl imidazole and cross linker ethylene glycol dimethacrylate-based glutathione imprinted polymer could be used as solid phase extraction material for recognition of glutathione in biological samples.  相似文献   

14.
Protein-responsive imprinted polymers with specific shrinking and rebinding   总被引:1,自引:0,他引:1  
Stimuli-responsive protein imprinted polymers were obtained via a combination of molecular imprinting and reversible stimuli-responsive polymer using lysozyme or cytochrome c as template, N-isopropylacrylamide (NIPA) as major monomer, methacrylic acid (MAA) and acrylamide (AAm) as functional co-monomers, and N,N-methylenebisacrylamide (MBAAm) as crosslinker. The molecularly imprinted polymers (MIPs) can respond not only to external stimuli such as temperature and salt concentration, but also to the corresponding template protein with significant specific volume shrinking. This specific shrinking behavior was attributed to the synergistic effect of multiple-site weak interactions (electrostatic force, hydrogen bonding and hydrophobic interaction) and the cavity effect. The MIPs showed highly selective adsorption of template proteins with specific shrinking compared with the non-imprinted polymers. The results indicated that the MIPs seemed to change shape to accommodate the conformation of the template protein leading to the formation of a shape complementary cavity.  相似文献   

15.
Molecularly imprinted polymers (MIPs) against fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c β-chains, were prepared by cross-linking of β-d-Fru-Val-O-bis(4-vinylphenylboronate) with an excess of ethylene glycol dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM). Control MIPs were prepared in analogy by cross-linking the corresponding vinylphenylboronate esters of fructose and pinacol. After template extraction batch rebinding studies were performed using different pH values and buffer compositions. The Fru-Val imprinted TRIM cross-linked polymer binds about 1.4 times more Fru-Val than the fructose imprinted polymer and 2.7 times more Fru-Val than pinacol imprinted polymer. The highest imprinting effect was obtained in 100 mM sodium carbonate/10% methanol (pH 11.4). The TRIM cross-linked Fru-Val imprinted polymer showed a better specificity than the EDMA cross-linked polymer. The binding of valine was very low. Thermo gravimetric analysis indicated that the generated Fru-Val imprinted polymer has high thermo stability. No change in binding was observed after incubation of the polymers in buffer at 80 °C for 36 h. Since the functional group of the polymers (phenyl boronic acid) targets the sugar part of Fru-Val the imprint technique used should also be applicable for the development of MIPs against other glycated amino acids and peptides.  相似文献   

16.
A series of molecularly imprinted polymers have been prepared and investigated as stationary phases in high performance liquid chromatography for the separation of testosterone and epitestosterone using non-polar mobile phases. The polymers were imprinted using 5α-dihydrotestosterone as template, and all retain testosterone more strongly than its 17α-OH epimer. The best polymer was prepared using trifluoromethylacrylic acid as functional monomer (interacting with the template via hydrogen bonds), divinylbenzene as ‘inert’ cross-linker, and chloroform as porogen. It also included a steroid-based cross-linker, which may interact with the template via van der Waals interactions to lend additional ‘shape selectivity’. A 250 × 4.6 mm column packed with this polymer gave baseline resolution of testosterone and epitestosterone (15 μg each) in under 20 min. Preparation of the steroid based cross-linker included the selective reduction of 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) to the 3α,17β-diol using K-selectride.  相似文献   

17.
Three nitrophenol isomer-imprinted polymers were prepared under the same conditions using 4-vinylpyridine as a functional monomer. Different recognition capacities for template molecules were observed for the three polymers. Another imprinting system with stronger acidity than nitrophenol isomers, 2-hydroxybenzoic acid (salicylic acid) and 4-hydroxybenzoic acid, was imprinted using 4-vinylpyridine or acrylamide as functional monomer respectively. Both 4-hydroxybenzoic acid-imprinted polymers using the two monomers showed recognition ability for the template molecule. However, when acrylamide was chosen as functional monomer, the salicylic acid-imprinted polymer showed very weak recognition for the template molecule, whereas strong recognition ability of the resultant polymer for salicylic acid was observed with 4-vinylpyridine as functional monomer. It seems that the structure and acidity of template molecules is responsible for the difference in recognition, by influencing the formation and strength of interaction between template molecule and functional monomer during the imprinting process. An understanding of the mechanism of molecular imprinting and molecular recognition of MIPs will help to predict the selectivity of MIPs on the basis of template molecule properties.  相似文献   

18.
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented.  相似文献   

19.
Density Functional Theory calculations have been used to select, among a set of chemicals traditionally used in the formulation of non-covalent molecularly imprinted polymers (MIPs), the best functional monomer and porogenic solvent for the construction of a recognition element for the dopamine metabolite homovanillic acid (HVA). Theoretical predictions were confirmed through batch binding assays and voltammetric detection. The computational method predicts that trifluoromethacrylic acid and toluene are the monomer and solvent rendering the highest stabilization energy for the pre-polymerization adducts. HVA-MIP prepared using this formulation gives rise to a binding isotherm that is accurately modelled by the Freundlich isotherm. The binding properties of this polymer were estimated using affinity distribution analysis. An apparent number of sites of 13 micromol g(-1) with an average affinity constant of 2 x 10(4) M(-1) was obtained in the concentration window studied.  相似文献   

20.
A method for the selective detection of creatinine is reported, which is based on the reaction between polymerised hemithioacetal, formed by allyl mercaptan, o-phthalic aldehyde, and primary amine leading to the formation of fluorescent isoindole complex. This method has been demonstrated previously for the detection of creatine using creatine-imprinted molecularly imprinted polymers (MIPs) Since MIPs created using traditional methods were unable to differentiate between creatine and creatinine, a new approach to the rational design of a molecularly imprinted polymer (MIP) selective for creatinine was developed using computer simulation. A virtual library of functional monomers was assigned and screened against the target molecule, creatinine, using molecular modelling software. The monomers giving the highest binding score were further tested using simulated annealing in order to mimic the complexation of the functional monomers with template in the monomer mixture. The result of this simulation gave an optimised MIP composition. The computationally designed polymer demonstrated superior selectivity in comparison to the polymer prepared using traditional approach, a detection limit of 25 μM and good stability. The ‘Bite-and-Switch’ approach combined with molecular imprinting can be used for the design of assays and sensors, selective for amino containing substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号