首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In C. elegans, a G(o)/G(q) signaling network regulates locomotion and egg laying [1-8]. Genetic analysis shows that activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is suppressed by perturbations of this network, which include loss of the GOA-1 G(o)alpha, DGK-1 diacylglycerol kinase, EAT-16 G protein gamma subunit-like (GGL)-containing RGS protein, or an unidentified protein encoded by the gene eat-11 [9]. We cloned eat-11 and report that it encodes the Gbeta(5) ortholog GPB-2. Gbeta(5) binds specifically to GGL-containing RGS proteins, and the Gbeta(5)/RGS complex can promote the GTP-hydrolyzing activity of Galpha subunits [10, 11]. However, little is known about how this interaction affects G protein signaling in vivo. In addition to EAT-16, the GGL-containing RGS protein EGL-10 participates in G(o)/G(q) signaling; EGL-10 appears to act as an RGS for the GOA-1 G(o)alpha, while EAT-16 appears to act as an RGS for the EGL-30 G(q)alpha [4, 5]. We have combined behavioral, electrophysiological, and pharmacological approaches to show that GPB-2 is a central member of the G(o)/G(q) network and that GPB-2 may interact with both the EGL-10 and EAT-16 RGS proteins to mediate the opposing activities of G(o)alpha and G(q)alpha. These interactions provide a mechanism for the modulation of behavior by antagonistic G protein networks.  相似文献   

2.
BACKGROUND: Gbeta proteins have traditionally been thought to complex with Ggamma proteins to function as subunits of G protein heterotrimers. The divergent Gbeta(5) protein, however, can bind either Ggamma proteins or regulator of G protein signaling (RGS) proteins that contain a G gamma-like (GGL) domain. RGS proteins inhibit G protein signaling by acting as Galpha GTPase activators. While Gbeta(5) appears to bind RGS proteins in vivo, its association with Ggamma proteins in vivo has not been clearly demonstrated. It is unclear how Gbeta(5) might influence RGS activity. In C. elegans there are exactly two GGL-containing RGS proteins, EGL-10 and EAT-16, and they inhibit Galpha(o) and Galpha(q) signaling, respectively. RESULTS: We knocked out the gene encoding the C. elegans Gbeta(5) ortholog, GPB-2, to determine its physiological roles in G protein signaling. The gpb-2 mutation reduces the functions of EGL-10 and EAT-16 to levels comparable to those found in egl-10 and eat-16 null mutants. gpb-2 knockout animals are viable, and exhibit no obvious defects beyond those that can be attributed to a reduction of EGL-10 or EAT-16 function. GPB-2 protein is nearly absent in eat-16; egl-10 double mutants, and EGL-10 protein is severely diminished in gpb-2 mutants. CONCLUSIONS: Gbeta(5) functions in vivo complexed with GGL-containing RGS proteins. In the absence of Gbeta(5), these RGS proteins have little or no function. The formation of RGS-Gbeta(5) complexes is required for the expression or stability of both the RGS and Gbeta(5) proteins. Appropriate RGS-Gbeta(5) complexes regulate both Galpha(o) and Galpha(q) proteins in vivo.  相似文献   

3.
Regulator of G protein signaling (RGS) proteins contain an RGS domain that inhibits G(alpha) signaling by activating G(alpha) GTPase activity. Certain RGS proteins also contain a Ggamma-like (GGL) domain and a poorly characterized but conserved N-terminal region. We assessed the functions of these subregions in the Caenorhabditis elegans RGS proteins EGL-10 and EAT-16, which selectively inhibit GOA-1 (G(alpha)(o)) and EGL-30 (G(alpha)(q)), respectively. Using transgenes in C. elegans, we expressed EGL-10, EAT-16, their subregions, or EGL-10/EAT-16 chimeras. The chimeras showed that the GGL/RGS region of either protein can act on either GOA-1 or EGL-30 and that a key factor determining G(alpha) target selectivity is the manner in which the N-terminal and GGL/RGS regions are linked. We also found that coexpressing N-terminal and GGL/RGS fragments of EGL-10 gave full EGL-10 activity, whereas either fragment alone gave little activity. Biochemical analysis showed that coexpressing the two fragments caused both to increase in abundance and also caused the GGL/RGS fragment to move to the membrane, where the N-terminal fragment is localized. By coimmunoprecipitation, we found that the N-terminal fragment complexes with the C-terminal fragment and its associated Gbeta subunit, GPB-2. We conclude that the N-terminal region directs inhibition of G(alpha) signaling by forming a complex with the GGL/RGS region and affecting its stability, membrane localization, and G(alpha) target specificity.  相似文献   

4.
Palmitoylation is a reversible post-translational modification used by cells to regulate protein activity. The regulator of G-protein signaling (RGS) proteins RGS4 and RGS16 share conserved cysteine (Cys) residues that undergo palmitoylation. In the accompanying article (Hiol, A., Davey, P. C., Osterhout, J. L., Waheed, A. A., Fischer, E. R., Chen, C. K., Milligan, G., Druey, K. M., and Jones, T. L. Z. (2003) J. Biol. Chem. 278, 19301-19308), we determined that mutation of NH2-terminal cysteine residues in RGS16 (Cys-2 and Cys-12) reduced GTPase accelerating (GAP) activity toward a 5-hydroxytryptamine (5-HT1A)/G alpha o1 receptor fusion protein in cell membranes. NH2-terminal acylation also permitted palmitoylation of a cysteine residue in the RGS box of RGS16 (Cys-98). Here we investigated the role of internal palmitoylation in RGS16 localization and GAP activity. Mutation of RGS16 Cys-98 or RGS4 Cys-95 to alanine reduced GAP activity on the 5-HT1A/G alpha o1 fusion protein and regulation of adenylyl cyclase inhibition. The C98A mutation had no effect on RGS16 localization or GAP activity toward purified G-protein alpha subunits. Enzymatic palmitoylation of RGS16 resulted in internal palmitoylation on residue Cys-98. Palmitoylated RGS16 or RGS4 WT but not C98A or C95A preincubated with membranes expressing 5-HT1a/G alpha o1 displayed increased GAP activity over time. These results suggest that palmitoylation of a Cys residue in the RGS box is critical for RGS16 and RGS4 GAP activity and their ability to regulate Gi-coupled signaling in mammalian cells.  相似文献   

5.
Regulators of G-protein signaling (RGSs) are negative regulators of G-protein coupled receptor (GPCR)-mediated signaling that function to limit the lifetime of receptor-activated G(alpha)-proteins. Here we show that four mammalian RGSs differentially inhibit the activation of a FUS1--LacZ reporter gene by the STE2 encoded GPCR in yeast. In order to examine the role of the GPCR in modulating RGS function, we functionally expressed the human somatostatin receptor 5 (SST(5)) in yeast. In the absence of RGSs, FUS1--LacZ activation in response to somatostatin increased in a dose-dependent manner in cells expressing SST(5). In contrast to the results obtained with Ste2p, all RGSs completely inhibited SST(5)-mediated signaling even at concentrations of agonist as high as 10(minus sign5) M. The ability of RGSs to inhibit SST(5) signaling was further assessed in cells expressing modified Gpa1 proteins. Even though SST(5)-mediated FUS1--LacZ activation was 5-fold more efficient with a Gpa1p/G(i3alpha) chimera, response to somatostatin was completely abolished by all four RGSs. Furthermore, we demonstrate that RGS1, RGS2 and RGS5 have reduced ability to inhibit SST(5)-mediated activation of the RGS-resistant Gpa1p(Gly302Ser) mutant suggesting that the ability to interact with the G(alpha)-protein is required for the inhibition of signaling. Taken together, our results indicate that RGSs serve as better GAPs for Gpa1p when activated by SST(5) than when this G-protein is activated by Ste2p.  相似文献   

6.
Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Gα GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family.  相似文献   

7.
RGS2: a multifunctional regulator of G-protein signaling   总被引:5,自引:0,他引:5  
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic rate at which certain heterotrimeric G-protein alpha-subunits hydrolyze GTP to GDP, thereby limiting the duration that alpha-subunits activate downstream effectors. This activity defines them as GTPase activating proteins (GAPs). As do other RGS proteins RGS2 possesses a 120 amino acid RGS domain, which mediates its GAP activity. In addition, RGS2 shares an N-terminal membrane targeting domain with RGS4 and RGS16. Found in many cell types, RGS2 expression is highly regulated. Functionally, RGS2 blocks Gq alpha-mediated signaling, a finding consistent with its potent Gq alpha GAP activity. Surprisingly, RGS2 inhibits Gs signaling to certain adenylyl cyclases. Like other RGS proteins, RGS2 lacks Gs alpha GAP activity, however it directly inhibits the activity of several adenylyl cyclase isoforms. Targeted mutation of RGS2 in mice impairs anti-viral immunity, increases anxiety levels, and alters synaptic development in hippocampal CA1 neurons. RGS2 has emerged as a multifunctional RGS protein that regulates multiple G-protein linked signaling pathways.  相似文献   

8.
Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1-4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1-4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks.  相似文献   

9.
《Gene》1998,206(2):247-253
Regulators of G-protein signaling (RGS) constitute a family of GTPase-activating proteins with varying tissue-specific expression patterns and G-protein alpha subunit specificities. Here, we describe the molecular cloning of the human RGS-r/RGS16 cDNA, encoding a predicted polypeptide of 23 kDa that shows 86% identity to mouse RGS-r. Northern blot analysis shows that, like the mouse Rgs-r message, hRGS-r mRNA is abundantly expressed in retina, with lower levels of expression in most other tissues examined. Characterization of the genomic organization of the hRGS-r gene shows that it consists of five exons and four introns. We have also mapped the human RGS-r /RGS16 gene to chromosome 1q25–1q31 by fluorescence in situ hybridzation. Analysis of human ESTs reveals that at least five members of the RGS gene family map to chromosome 1q, suggesting that at least part of the RGS family arose through gene duplication. The chromosomal location, retinal abundance, and presumed function of the human RGS-r protein in desensitizing photoreceptor signaling make the RGS-r/RGS16 locus a candidate for mutations responsible for retinitis pigmentosa with para-arteriolar preservation of retinal pigment epithelium (RP-PPRE or RP12), an autosomal recessive disorder previously mapped to 1q31.  相似文献   

10.
G-protein-coupled receptors transduce their signals through G-protein subunits which in turn are subject to modulation by other intracellular proteins such as the regulators of G-protein signaling (RGS) proteins. We have developed a cell-free, homogeneous (mix and read format), time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor heterotrimeric G-protein subunit interactions and the interaction of the G alpha subunit with RGS4. The assay uses a FRET pair consisting of a terbium cryptate chelate donor spectrally matched to an Alexa546 fluor acceptor, each of which is conjugated to separate protein binding partners, these being G alpha(i1):beta4gamma2 or G alpha(i1):RGS4. Under conditions favoring specific binding between labeled partners, high-affinity interactions were observed as a rapid increase (>fivefold) in the FRET signal. The specificity of these interactions was demonstrated using denaturing or competitive conditions which caused significant reductions in fluorescence (50-85%) indicating that labeled proteins were no longer in close proximity. We also report differential binding effects as a result of altered activation state of the G alpha(i1) protein. This assay confirms that interactions between G-protein subunits and RGS4 can be measured using TR-FRET in a cell- and receptor-free environment.  相似文献   

11.
Physiological actions of regulators of G-protein signaling (RGS) proteins   总被引:5,自引:0,他引:5  
Ishii M  Kurachi Y 《Life sciences》2003,74(2-3):163-171
Regulators of G-protein signaling (RGS) proteins are a family of proteins, which accelerate GTPase-activity intrinsic to the alpha subunits of heterotrimeric G-proteins and play crucial roles in the physiological control of G-protein signaling. If RGS proteins were active unrestrictedly, they would completely suppress various G-protein-mediated cell signaling as has been shown in the over-expression experiments of various RGS proteins. Thus, physiologically the modes of RGS-action should be under some regulation. The regulation can be achieved through the control of either the protein function and/or the subcellular localization. Examples for the former are as follows: (i) Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) inhibits RGS-action, which can be recovered by Ca(2+)/calmodulin. This underlies a voltage-dependent "relaxation" behavior of G-protein-gated K(+) channels. (ii) A modulatory protein, 14-3-3, binds to the RGS proteins phosphorylated by PKA and inhibits their actions. For the latter mechanism, additional regulatory modules, such as PDZ, PX, and G-protein gamma subunit-like (GGL) domains, identified in several RGS proteins may be responsible: (i) PDZ domain of RGS12 interacts with a G-protein-coupled chemokine receptor, CXCR2, and thus facilitates its GAP action on CXCR2-mediated G-protein signals. (ii) RGS9 forms a complex with a type of G-protein beta-subunit (Gbeta5) via its GGL domain, which facilitates the GAP function of RGS9. Both types of regulations synergistically control the mode of action of RGS proteins in the physiological conditions, which contributes to fine tunings of G-protein signalings.  相似文献   

12.
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.  相似文献   

13.
Regulators of G protein signaling (RGS) proteins that contain DEP (disheveled, EGL-10, pleckstrin) and GGL (G protein gamma subunit-like) domains form a subfamily that includes the mammalian RGS proteins RGS6, RGS7, RGS9, and RGS11. We describe the cloning of RGS6 cDNA, the specificity of interaction of RGS6 and RGS7 with G protein beta subunits, and certain biochemical properties of RGS6/beta5 and RGS7/beta5 complexes. After expression in Sf9 cells, complexes of both RGS6 and RGS7 with the Gbeta5 subunit (but not Gbetas 1-4) are found in the cytosol. When purified, these complexes are similar to RGS11/beta5 in that they act as GTPase-activating proteins specifically toward Galpha(o). Unlike conventional G(betagamma) complexes, RGS6/beta5 and RGS7/beta5 do not form heterotrimeric complexes with either Galpha(o)-GDP or Galpha(q)-GDP. Neither RGS6/beta5 nor RGS7/beta5 altered the activity of adenylyl cyclases types I, II, or V, nor were they able to activate either phospholipase C-beta1 or -beta2. However, the RGS/beta5 complexes inhibited beta(1)gamma(2)-mediated activation of phospholipase C-beta2. RGS/beta5 complexes may contribute to the selectivity of signal transduction initiated by receptors coupled to G(i) and G(o) by binding to phospholipase C and stimulating the GTPase activity of Galpha(o).  相似文献   

14.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

15.
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.  相似文献   

16.
The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity.  相似文献   

17.
Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human G alpha(q) and G alpha(11) spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of G alpha-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both G alpha(q) and G alpha(11) but, in contrast, RGS5 and RGS16 were much less effective against G alpha(11) than G alpha(q). Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active G alpha(q)QL/G alpha(11)QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-G alpha specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of G alpha(q)/G alpha(11) enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both G alpha subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential G alpha activity, further highlighting that RGS proteins can discriminate between two very closely related G alpha subunits.  相似文献   

18.
Regulator of G-protein signaling (RGS) proteins are a family of highly diverse, multifunctional proteins that function primarily as GTPase accelerating proteins (GAPs). RGS proteins increase the rate of GTP hydrolysis by Gα proteins and essentially regulate the duration of active signaling. Recently, we have identified two chimeric RGS proteins from soybean and reported their distinct GAP activities on individual Gα proteins. A single amino acid substitution (Alanine 357 to Valine) of RGS2 is responsible for differential GAP activity. Surprisingly, most monocot plant genomes do not encode for a RGS protein homolog. Here we discuss the soybean RGS proteins in the context of their evolution in plants, their relatedness to non-plant RGS protein homologs and the effect they might have on the heterotrimeric G-protein signaling mechanisms. We also provide experimental evidence to show that the interaction interface between plant RGS and Gα proteins is different from what is predicted based on mammalian models.  相似文献   

19.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   

20.
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate Galpha signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G(q/11)-coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G(i/o)-coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G(q)alpha and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G(11)alpha in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号