首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular and genetic mapping of the mouse mdx locus   总被引:1,自引:0,他引:1  
mdx is an X-linked muscular dystrophy mutant of the mouse and a putative homolog of the human X-linked muscular dystrophy locus--Duchenne muscular dystrophy (DMD). Utilizing a C57BL/10/Mus Spretus interspecific cross in which the mdx mutation was segregating, we have constructed a detailed genetic map around the mdx locus on the mouse X chromosome. We were unable to detect recombinants between mdx and exonic probes derived from the human DMD gene. These genetic data support the contention from biochemical studies (E.P. Hoffman, R. H. Brown, and L. M. Kunkel, 1987, Cell 51: 919-928) that DMD and mdx are homologous genes.  相似文献   

2.
3.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

4.
We have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterise deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5' end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.  相似文献   

5.
We have isolated overlapping human fetal muscle cDNAs encompassing 2.6kb which are localised very close to the 5' end of the Duchenne muscular dystrophy (DMD) gene. Using DNA from patients with deletions of previously reported genomic probes, we have mapped the exons across the region. Investigation of deletions in both DMD and Becker muscular dystrophy (BMD) patients shows the deletions to be present in 10% of cases and heterogeneous.  相似文献   

6.
本文使用了缺失热点区的两个DMD cDNA片段1b-2a及8为探针检测Duc-henne型及Becker型肌营养不良(DMD/BMD)患者的基因缺失。在34例不相关患者中分别检测到5例及8例基因片段缺失,缺失检测率分别为14.7%及23.5%,总检出率为38.2%。结果表明,中国肌营养不良患者的基因缺失也不是随机分布的,主要集中于基因中心附近,其次在基因5′侧。  相似文献   

7.
We have studied 34 Becker and 160 Duchenne muscular dystrophy (DMD) patients with the dystrophin cDNA, using conventional blots and FIGE analysis. One hundred twenty-eight mutations (65%) were found, 115 deletions and 13 duplications, of which 106 deletions and 11 duplications could be precisely mapped in relation to both the mRNA and the major and minor mutation hot spots. Junction fragments, ideal markers for carrier detection, were found in 23 (17%) of the 128 cases. We identified eight new cDNA RFLPs within the DMD gene. With the use of cDNA probes we have completed the long-range map of the DMD gene, by the identification of a 680-kb SfiI fragment containing the gene's 3' end. The size of the DMD gene is now determined to be about 2.3 million basepairs. The combination of cDNA hybridizations with long-range analysis of deletion and duplication patients yields a global picture of the exon spacing within the dystrophin gene. The gene shows a large variability of intron size, ranging from only a few kilobases to 160-180 kb for the P20 intron.  相似文献   

8.
Hybridization of GABAA receptor probes to human chromosomes in situ and to DNA from sorted human chromosomes has localized the genes encoding a beta subunit and three isoforms of the alpha subunit. The alpha 2 and beta genes are both located on chromosome 4 in bands p12-p13 and may be adjacent. The alpha 1 gene is on chromosome 5 (bands q34-q35) and the alpha 3 gene is on the X chromosome. The alpha 3 locus was mapped also on the mouse X chromosome using genetic break-point analysis in an interspecies pedigree. The combined results locate the human alpha 3 gene within band Xq28, in a location that makes it a candidate gene for the X-linked form of manic depression.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is secondary to loss-of-function mutations in the dystrophin gene. The causes underlying the progression of DMD, differential muscle involvement, and the discrepancies in phenotypes among species with the same genetic defect are not understood. The mdx mouse, an animal model with dystrophin mutation, has a milder phenotype. This article reviews the available information on expression of signaling-related molecules in DMD and mdx. Extracellular matrix proteoglycans, growth factors, integrins, caveolin-3, and neuronal nitric oxide synthase expression do not show significant differences. Calcineurin is inconsistently activated in mdx. which is associated with lack of cardiomyopathy, compared to the permanent calcineurin activation in mdx/utrophin null mice that have a DMD-like cardiomyopathy. Levels of focal adhesion kinase (FAK) and extracellular regulated kinases (ERKs) differ among mdx and DMD. Further work is needed to identify the point of discrepancy in these signaling molecules' pathways in dystrophynopathies.  相似文献   

10.
11.
The inheritance of two restriction fragment length polymorphisms (RFLPs) on the short arm of the human X chromosome has been studied relative to Duchenne muscular dystrophy. This provides a partial genetic map of the short arm of the human X chromosome between Xp110 and Xp223. The data were derived from the segregation between a RFLP located at Xp21-Xp223, the DMD locus, and a RFLP located at Xp110-Xp113. The genetic distance from Xp110 to Xp223 was found to be approximately 40 centimorgans (cM). This provides experimental confirmation that 1cM corresponds to approximately 1,000 kilobase pairs of DNA for this region of the human X chromosome. Our data confirm that the DMD mutation lies between Xp223 and Xp110. The availability of flanking probes surrounding the DMD locus will assist in the ordering of further DNA sequences relative to the mutation.  相似文献   

12.
13.
In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of?MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.  相似文献   

14.
Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson’s trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.  相似文献   

15.
Hepatitis B virus transcripts in a human hepatoma cell line, Hep 3B   总被引:1,自引:0,他引:1  
Hep 3B, a human hepatoma cell line was examined for its RNA hybridizable to the hepatitis B virus sequence. Using probes that covered different regions of the hepatitis B virus genome, five species of RNA were observed of sizes 4.0, 3.3, 2.9, 2.6 and 2.2 kilobases. The RNAs covered surface antigen gene, pre-S and X regions. None of them had a core antigen sequence. RNA with a 4.0 kilobase size was the most abundant. Using S1 nuclease analysis, its 5' end of hepatitis B virus sequence was mapped at pre-S region and its 3' end of viral sequence was mapped at DR region.  相似文献   

16.
17.
BACKGROUND: The activity of synthetic antisense oligonucleotides (splicomers) designed to block pre-mRNA splicing at specific exons has been demonstrated in a number of model systems, including constitutively spliced exons in mouse dystrophin RNA. Splicomer reagents directed to Duchenne muscular dystrophy (DMD) RNAs might thus circumvent nonsense or frame-shifting mutations, leading to therapeutic expression of partially functional dystrophin, as occurs in the milder, allelic (Becker) form of the disease (BMD). METHODS: Functional and hybridisation array screens have been used to select optimised splicomers directed to exon 23 of dystrophin mRNA which carries a nonsense mutation in the mdx mouse. Splicomers were transfected into cultured primary muscle cells, and dystrophin mRNA assessed for exon exclusion. Splicomers were also administered to the muscles of mdx mice. RESULTS: Oligonucleotide array analyses with dystrophin pre-mRNA probes revealed strong and highly specific hybridisation patterns spanning the exon 23/intron 23 boundary, indicating an open secondary structure conformation in this region of the RNA. Functional screening of splicomer arrays by direct analysis of exon 23 RNA splicing in mdx muscle cultures identified a subset of biologically active reagents which target sequence elements associated with the 5' splice site region of dystrophin intron 23; splicomer-mediated exclusion of exon 23 was specific and dose-responsive up to a level exceeding 50% of dystrophin mRNA, and Western blotting demonstrated de novo expression of dystrophin protein at 2-5% of wild-type levels. Direct intramuscular administration of optimised splicomer reagents in vivo resulted in the reappearance of sarcolemmal dystrophin immunoreactivity in > 30% of muscle fibres in the mdx mouse CONCLUSIONS: These results suggest that correctly designed splicomers may have direct therapeutic value in vivo, not only for DMD, but also for a range of other genetic disorders.  相似文献   

18.
A contig of 36 overlapping yeast artificial chromosome (YAC) clones has been constructed for the complete Duchenne muscular dystrophy (DMD) gene in Xp21. The YACs were isolated from a human 48,XXXX YAC library using the DMD cDNA and brain promoter fragments as hybridization probes. The YAC clones were characterized for exon content using HindIII or EcoRI digests, hybridization of individual DMD cDNA probes, and polymerase chain reaction (PCR) amplification of specific exons near the 5' end of the gene. For comparison to the known long-range restriction map of the DMD gene, YAC clones were digested with SfiI and hybridized with DMD cDNA probes. The combined analysis of the exon content and the SfiI map allowed an approximately 3.2-Mb YAC contig to be constructed. The complete 2.4-Mb DMD gene could be represented in a minimum set of 7 overlapping YAC clones.  相似文献   

19.
20.
Patients with Duchenne muscular dystrophy (DMD), an X-linked lethal muscle-wasting disease, have abnormal expression of the protein dystrophin within their muscle fibres. In the mdx mouse model of this condition, both germline and neonatal somatic gene transfers of dystrophin cDNAs have demonstrated the potential of gene therapy in treating DMD. However, in many DMD patients, there appears to be no dystrophin expression when muscle biopsies are immunostained or western blots are performed. This raises the possibility that the expression of dystrophin following gene transfer might trigger a destructive immune response against this 'neoantigen'. Immune responses can also be generated against the gene transfer vector used to transfect the dystrophic muscle, and the combined immune response could further damage the already inflamed muscle. These problems are now beginning to be investigated in immunocompetent mdx mice. Although much work remains to be done, there are promising indications that these immune responses might not prove as much of a concern as originally envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号