首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A series of microarray analyses employing the expressed sequence tags (ESTs) of hot pepper was conducted in an effort to elucidate the molecular mechanisms inherent to hypersensitive response (HR) by viral or bacterial pathogens. There were 2535 ESTs exhibiting differential expression (over 2-fold changes) among about 5000 ESTs during viral or bacterial response. Further, via virus-induced gene silencing (VIGS) and TMV-infection studies, we were able to isolate several ESTs, which may be relevant to defense response against TMV. Of these ESTs, Capsicum annuum fatty acid desaturase 1 (CaFAD1) showed the distinct phenotype against TMV infection and thus was subjected to further study. CaFAD1-silenced plants showed weaker resistance against TMV-P0 infection compared to TRV2 control plants. Also the suppression of FAD1 expression caused blocking of cell death induced by Bcl2-associated X (Bax) protein in tobacco plants. Therefore, this report presents that both microarray and VIGS approaches are feasible in hot pepper plants and the TMV-induced CaFAD1 plays a role in HR response.  相似文献   

5.
6.
Hot pepper (Capsicum annuum) plants exhibit a hypersensitive response (HR) against infection by many tobamoviruses. A clone (CaPR-4) encoding a putative pathogenesis-related protein 4 was isolated by differential screening of a cDNA library prepared from resistant pepper plant leaves inoculated with tobacco mosaic virus (TMV) pathotype P0. The predicted amino acid sequence of CaPR-4 is very similar to those of other plant PR-4s. Southern blot analysis showed that small gene families of PR-4-related sequences were present in the pepper genome. Hot pepper cultivar Bugang, resistant to TMV-P0 and susceptible to TMV-P1.2, induced CaPR-4 expression by pathotype P0 inoculation in inoculated and systemic leaves, but not by pathotype P1.2. Effects of exogenously applied abiotic elicitors upon the CaPR-4 expression were also examined. The expression of the CaPR-4 gene was stimulated by methyl jasmonate (MeJA), ethephon and wounding treatment. However, application of salicylic acid (SA) did not trigger the expression. Evidence is emerging that jasmonic acid and ethylene play key roles in the SA-independent pathways of plant-pathogen interaction. Taken together, these results suggest that the CaPR-4 gene is one of the defense-related genes conferring resistance on pepper plants by the SA-independent pathway and the cross-talk between signaling compounds, jasmonic acid and ethylene could have a great regulatory potential in a plant's defense against TMV.  相似文献   

7.
Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P(0) interaction, but not during compatible TMV-P(1.2) interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.  相似文献   

8.
The hypersensitive reaction (HR) in plants is typified by a rapid and localized cell death at the site of pathogen infection. To understand better the molecular and cellular defence mechanism controlling HR, hot pepper leaves (Capsicum annuum cv. Pukang) were inoculated with the soybean pustule pathogen Xanthomonas campestris pv. glycine 8ra. By using the DD-PCR technique, a cDNA fragment was identified that exhibited a sequence similarity to the recently identified tobacco pathogen-induced oxygenase (PIOX) with homology to animal cyclo-oxygenase (COX). Subsequently, the full-length cDNA clone, pCa-COX1, encoding the COX homologue from the pathogen-inoculated hot pepper leaf cDNA library was isolated. The deduced amino acid sequence of Ca-COX1 shares 85.8% identity with tobacco PIOX and displays a significant degree of sequence identity (21.7-23.7%) with mammalian COXs. The expression of Ca-COX1 was markedly induced at 4-12 h after pathogen infection, while HR cell death on pepper leaves appeared at approximately 15 h post-inoculation. These results are consistent with the notion that the lipid-derived signalling pathway is involved in the initial response of hot pepper plants to pathogen infection.  相似文献   

9.
A putative cytochrome P450 gene from chili pepper, Capsicum annuum L. Bukang cytochrome P450 (CaCYP1), was identified using cDNA microarray analysis of gene expression following induction of the leaf hypersensitive response by inoculation of pepper plants with the non-host pathogen Xanthomonas axonopodis pv. glycines 8ra. The full-length cDNA of CaCYP1 encoded a protein of 514 amino acid residues, which contained a putative hydrophobic membrane anchoring domain in the N-terminal region, and a heme-binding motif in the C-terminal region. Analysis of the deduced amino acid sequence of CaCYP1 revealed that it has high homology to Arabidopsis CYP89A5, the function of which is unknown. Expression of CaCYP1 was preferentially increased in pepper plants in response to non-host pathogen inoculation and also during the host resistance response. CaCYP1 expression also increased following treatment with salicylic acid and abscisic acid, while treatment with ethylene had a mild effect. Using a virus-induced gene silencing-based reverse genetics approach, we demonstrated that suppression of CaCYP1 results in enhanced susceptibility to bacterial pathogens. Interestingly, gene silencing of CaCYP1 in pepper plants resulted in the reduced expression of the defense-related genes CaLTP1, CaSIG4, and Cadhn. Our results indicated that CaCYP1, a novel cytochrome P450 in pepper plants, may play a role in plant defense response pathways that involve salicylic acid and abscisic acid signaling pathways.  相似文献   

10.
11.
12.
Chung E  Park JM  Oh SK  Joung YH  Lee S  Choi D 《Planta》2004,220(2):286-295
The isolated full-length Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) cDNA clone was selected from the chili pepper expressed sequence tag database (). Phylogenetic analysis based on the deduced amino acid sequence of CaCDPK3 cDNA revealed significant sequence similarity to the winter squash (Cucurbita maxima) CmCPK2 gene (81% identity). Genomic gel blot analysis disclosed that CaCDPK3 belongs to a multigene family in the pepper genome. CaCDPK3 expression was root tissue-specific, as shown by Northern blot data. The gene was rapidly induced in response to various osmotic stress factors and exogenous abscisic acid application in pepper leaves. Moreover, CaCDPK3 RNA expression was induced by an incompatible pathogen and by plant defense-related chemicals such as ethephon, salicylic acid and jasmonic acid. The biochemical properties of CaCDPK3 were investigated using a CaCDPK3 and glutathione S-transferase (GST) fusion protein. The recombinant proteins retained calcium-binding ability, and displayed autophosphorylation activity in vitro in a calcium-dependent manner. Further transient-expression studies showed that CaCDPK3 fused with soluble modified green fluorescent protein (smGFP) localized to the cytosol in chili pepper protoplasts. We propose that CaCDPK3 is implicated in biotic and abiotic stresses in pepper plants.  相似文献   

13.
14.
The 22 kDa auxin-binding proteins in higher plants have received considerable attention as candidates for an auxin receptor. A cDNA clone Ca-ERabp1 of hot pepper (Capsicum annum) was isolated using the oligonucleotides as PCR primers. The cDNA codes for a polypeptide related to the major 22 kDa auxin-binding protein from maize and Arabidopsis ERabp1. The deduced amino acid sequence contains an endoplasmic reticulum retention signal, the KDEL sequence located at the C-terminal end, and has two possible auxin-binding sites, HRHSCE and YDDWSVPHTA conserved sequences. Northern hybridization analysis revealed that the Ca-ERabp1 gene is differentially expressed in total RNA isolated from different organs of a pepper plant, showing the highest level of expression in fruits but barely detectable in leaves and roots.  相似文献   

15.
16.
Hot pepper (Capsicum annuum L. cv. Bugang) plants exhibit a hypersensitive response (HR) upon infection by Tobacco mosaic virus (TMV) pathotype P0. Previously, to elucidate molecular mechanism that underlies this resistance, hot pepper cv. Bugang leaves were inoculated with TMV-P0 and genes specifically up-regulated during the HR were isolated by microarray analysis. One of the clones, Capsicum annuum cytosolic pyruvate kinase 1 (CaPK c 1) gene was increased specifically in the incompatible interaction with TMV-P0. The expression of CaPK c 1 gene was also triggered not only by various hormones such as salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), but also NaCl and wounding. These results suggest that CaPK c 1 responds to several defense-related abiotic stresses in addition to TMV infection. The nucleotide sequence data reported in this paper were submitted to the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number DQ114474.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号