首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly purified (12 nmol of P-450-heme per milligram of protein) bovine adrenal cortex mitochondrial cytochrome P-450, termed P-450sce, which cleaves the side chain of cholesterol to yield pregnenolone, is obtained in the substrate-bound ferric form with observed absorption maxima at 393 nm and 645 nm and a shoulder around 540 nm. The absorption spectra of the P-450scc, whether in the substrate-bound ferric form or in the CO-complexed ferrous form, are subject to environmental perturbation. The addition of adrenal ferredoxin readily restores full ferric high spin type spectrum of the substrate-bound P-450scc or, together with cholesterol and Tween 20, restores the CO-spectrum of the P-450scc, exhibiting stable and typical spectra of cytochrome P-450. Tween 20, at concentration of 0.3%, remarkably increases the P-450scc-catalyzed cholesterol side chain cleavage activity. Based on these findings, a highly reactive and reliable assay has been developed for the conversion of cholesterol to pregnenolone. The specific activity of the P-450scc, thus determined in the presence of NADPH, NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1), adrenal ferredoxin, cholesterol, and molecular oxygen, is 16 mol of pregnenolone formed per minute per mole of P-450-heme and V of enzyme catalyzed reaction was 30 mol/min/mol of P-450-heme. Apparent Km values are 120 μm for cholesterol and 1.5 μm for adrenal ferredoxin. The P-450scc has a pH optimum at pH 7.2 and is most active at ionic strength of 0.1.  相似文献   

2.
A highly purified preparation of cytochrome P-450, designated as P-45011β, has been obtained from bovine adrenal cortex mitochondria. The P-45011β exhibits remarkably high steroid hydroxylase activity in the reconstituted adrenal electron-donating system from NADPH via NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1) and adrenal ferredoxin. The turnover numbers (moles of hydroxylated product formed per minute per mole of P-450-heme) are 110 and 18 for respective 11β- and 18-hydroxylase activity when deoxycorticosterone is the substrate. The apparent Km value is 6 μm for both reactions. The ratio, about 6:1 between the two activities, is constant under various experimental conditions including those in the presence of competitive inhibitors of hydroxylation. In addition to deoxycorticosterone, other steroids such as 11-deoxycortisol, 4-androstene-3,17-dione and testosterone are the hydroxylatable substrates. In cases in which 4-androstene-3,17-dione, a C19-steroid, is the substrate, the hydroxylatable sites appear to be its respective 11β- and 19-position. The ratio between the two activities is about 4:1. In view of these results, it is concluded that one hemoprotein species, the P-45011β, is responsible for the hydroxylase reactions of various Corticosteroids. 2-Methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) inhibits the P-45011β-catalyzed steroid hydroxylase reactions of either deoxycorticosterone at 11β- and 18-position or 4-androstene-3,17-dione at 11β- and 19-position (Ki = 0.1-0.2 μM). The P-450scc-catalyzed cholesterol desmolase reaction is also inhibited, although weakly (Ki = 160 μM). In addition, both adrenal cytochromes appeared to differ from each other in spectral response to metyrapone.  相似文献   

3.
A cytochrome P-450, which is functional in the steroid methylene 11β-hydroxylation (P-45011β), has been purified to a protein weight of 85 kg per heme from bovine adrenocortical mitochondria. The purification is accomplished in the presence of deoxycorticosterone as a substrate stabilizer. The procedure involved solubilization of sonicated mitochondrial pellets, ammonium sulfate fractionation, alumina Cγ gel treatment and aniline-substituted Sepharose 4B chromatography.The purified preparation when freed from deoxycorticosterone, has a low spin type absorption spectrum which can rapidly be converted into a typical high spin substrate-bound form by the addition of an 11β-hydroxylatable steroid, either deoxycorticosterone or testosterone. The preparation exhibits high 11β-hydroxylase activity and is free from the cholesterol side-chain cleavage cytochrome P-450 (P-450scc).The purified P-45011β, when submitted to SDS-polyacrylamide gel electrophoresis, exhibits a single protein band (molecular weight of 46 kilodaltons) which is clearly distinguished from P-450scc. As determined by the sedimentation equilibrium method, the molecular weight of the guanidine-treated P-45011β is estimated to be 43 kilodaltons.  相似文献   

4.
Cytochrome P-450scc (P-450 XIA1) from bovine adrenocortical mitochondria was investigated using a suicide substrate: [14C]methoxychlor. [14C]Methoxychlor irreversibly abolished the activity of the side-chain cleavage enzyme for cholesterol (P-450scc) and the inactivation was prevented in the presence of cholesterol. The binding of [14C]methoxychlor and cytochrome P-450scc occurred in a molar ratio of 1:1 and the cholesterol-induced difference spectrum of cytochrome P-450scc was similar with the methoxychlor-induced difference spectrum. [14C]Methoxychlor-binding peptides were purified from tryptic-digested cytochrome P-450scc modified with [14C]methoxychlor. Determination of the sequence of the amino-acid residues of a [14C]methoxychlor-binding peptide allowed identification of the peptide comprising the amino-terminal amino-acid residues 8 to 28.  相似文献   

5.
The electron paramagnetic resonance (EPR) spectra of rat adrenal zona fasciculata mitochondria showed peaks corresponding to low spin ferric cytochrome P-450 with apparent g values of 2.424, 2.248 and 1.917, and weak signals due to high spin ferric cytochrome P-450 with gx values of 8.08 and 7.80. The former is attributed to cholesterol side chain cleavage cytochrome P-450, the latter to 11β-hydroxylase cytochrome P-450. On addition of deoxycorticosterone the g = 7.80 signal was elevated and there was an associated drop in the low spin signal. As the pH was reduced from 7.4 to 6.1, the g = 8.08 signal increased with again a drop in intensity of the low spin signal. Mitochondria from the zona glomerulosa showed similar spectral properties to those described above. Addition of succinate, isocitrate or pregnenolone caused a loss of the g = 8.08 signal. Addition of calcium increased the magnitude of the g = 8.08 signal, and caused a slight reduction in the magnitude of the low spin signal. Also, addition of deoxycorticosterone, pregnenolone, succinate or isocitrate caused slight shifts of the outer lines of the low spin spectrum. Interaction of mitochondrial cytochrome P-450 with metyrapone and aminoglutethimide modified the low spin parameters. Adrenal microsomal cytochrome P-450 had low spin ferric g values of 2.417, 2.244 and 1.919 and high spin ferric gxy values of 7.90 and 3.85, distinct from the values obtained with mitochondria.  相似文献   

6.
The midpoint reduction potentials of the haem iron in bovine adrenal cytochrome P-450 and its associated iron-sulphur protein, adrenal ferredoxin, have been measured, using EPR spectroscopy to monitor the high and low spin ferric haem iron and reduced adrenal ferredoxin signals as a function of potential, in mitochondrial and microsomal suspensions.In mitochondria the high spin (substrate-bound) cytochrome P-450 showed single-component one-electron plots under most conditions; at pH 6.65 cholesterol side-chain cleavage cytochrome P-450 (P-450scc) had a midpoint Em = ?305 mV; at pH 8.0 11β-hydroxylase cytochrome P-450 (P-45011β) had Em = ?335 mV. Low spin cytochrome P-450 showed more complex titration curves under all conditions, which could be most simply interpreted in terms of two one-electron components with midpoint potentials approx. ?360 and ?470 mV, with varying intensities. During treatments that caused substrate binding, only the ?470 mV component was reduced in magnitude. On sonication and removal of adrenal ferredoxin, the ?470 mV low spin component was converted to higher potential. The potentials could also be altered by the cytochrome P-450 inhibitors aminoglutethimide and metyrapone. In the microsomes, a high spin component of cytochrome P-450 (Em ≈ ?290 mV) was observed even at pH 8.0, suggesting the binding of an endogenous substrate, while the low spin P-450 showed a predominance of the ?360 mV component. The midpoint potential of membrane-bound adrenal ferredoxin under these various conditions was found to be ?248 mV ± 15 mV.  相似文献   

7.
All of the four 20,22-epoxycholesterols and (E)-20(22)-dehydrocholesterol were chemically synthesized and incubated with purified adrenocortical cytochrome P-450scc in the presence of an appropriate electron-supplying system. None of these cholesterol derivatives were significantly converted to pregnenolone by the enzyme. A slight inhibition of the side-chain cleavage of radioactive cholesterol was observed by the addition of the cholesterol derivatives, but there occurred no trapping of the radioactivity by these compounds. It may be concluded that the side-chain cleavage of cholesterol by the adrenal cytochrome P-450 does not operate through olefin and epoxide formation as the intermediates.  相似文献   

8.
Adrenocortical mitochondrial cytochrome P?450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11β-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0°C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11β-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents.Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

9.
Cytochrome P-45011β from adrenal cortex is an intrinsic membrane protein embedded in the inner mitochondrial membrane. Topography of the protein inside a phospholipid bilayer was examined using controlled proteolysis of purified cytochrome P-45011β following its integration into artificial liposomes. Inclusion of the protein into phospholipid vesicles led to a marked stabilization of the cytochrome activity. Trypsin treatment of the liposome-integrated cytochrome resulted in the rapid disappearance of the native protein moiety (47 kDa), while a major 34 kDa peptide component was formed. This peptide core retained the heme moiety and part of the cytochrome steroid-11β hydroxylase activity. Very similar observations were obtained when inside-out vesicles prepared from isolated adrenocortical mitoplasts were examined with the same approach. It is thus suggested that adrenocortical cytochrome P-45011β is embedded in the inner mitochondrial membrane as well as in artificial liposomes by a major hydrophobic domain associated with the heme moiety while a limited domain remains accessible on the matrix side of the membrane surface. The previous described phosphorylation of the cytochrome P-45011β on a serine residue, by the cAMP-dependent protein kinase is suggested to occur in the protein domain oriented toward the membrane surface, the phosphorylation site being lost under mild proteolytic digestion of the membrane-integrated protein.  相似文献   

10.
Bindings of fluoroaniline to cytochrome P-450scc (P-450scc) and metmyoglobin (metMb) were studied in terms of optical absorption at various temperatures and pH values. The following results were obtained. (i) P-450scc formed a low-spin complex on addition of fluoroaniline, while metMb remained in the high- spin state. (ii) The affinities of fluoroaniline compounds to P-450scc are more marked than those to metMb. (iii) The affinity of para-fluoroaniline to P-450scc is more marked than that of ortho- and meta- fluoroaniline. (iv) The temperature dependences of Kb values of fluoroaniline were more prominent for P-450scc than those for metMb, suggesting that the heme environment of P-450scc is more labile to temperature compared to that of metMb. (v) Enthalpy-entropy compensation effects were observed with fluoroaniline bindings to P-450scc and metMb. The correlation coefficients (r) of 0.986 and 0.998 and isokinetic temperatures (β) of 420 K and 571 K were calculated for P-450scc and metMb, respectively. (vi) Increasing pH value enhances the affinity of fluoroaniline to both P-450scc and metMb, which is in contrast to the binding of cholesterol to P-450scc.  相似文献   

11.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

12.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120 000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843–850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38 000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

13.
The crystal and molecular structure of (20R)-20-phenyl-5-pregnene-3β, 20-diol hemihydrate has been determined by X-ray analysis in order to establish the configuration and conformation at C(20). Interest in this compound was stimulated by its high affinity inhibitory binding to cytochrome P-450SCC, the enzyme which catalyzes the biosynthesis of pregnenolone(3β-hydroxy-5-pregnen-20-one) from cholesterol. The results of the analysis suggest a possible conformation for the cholesterol side chain in the enzyme complex.  相似文献   

14.
We describe the isolation of cytochrome P-4501α from chick-kidney mitochondria. Although, gel permeation HPLC yielded 41% of the total amount of P-450 present in cholate-solubilized hemeproteins, it produced a highly purified mixture from which the P-4501α could be purified to homogeneity in a final detergent-free state by a single-step application of hydrophobic interaction HPLC using hydroxypropyl silica. The purified P-4501α traveled as a single band in SDS gel electrophoresis with an apparent Mr = 57 000. The absolute spectrum of the P-4501α(Fe3+) form gave a λmax at 403 nm. This characteristic lends support to the anomalous high-spin heme electron paramagnetic resonance spectrum and the heme structure of P-4501α which we have previously reported (Ghazarian et al. (1980) J. Biol. Chem. 255, 8275–8281; Pedersen et al. (1976) J. Biol. Chem. 251, 3933–3941). In reconstitution experiments with ferredoxin-dependent NADPH-cytochrome c (P-450) reductase complexes, P-4501α catalyzed the hydroxylation of 25-hydroxy-9,10-secocholesta-5,7,10(19)-trien-3β-ol at the C-1 position exclusively with a turnover number of 0.03 min?1. This number is identical to that obtained from measurements of the catalytic activity in intact mitochondria, indicating that only one major species of cytochrome P-450 occurs in chick-kidney mitochondria. The complete responsiveness of cytochrome P-450 concentrations in intact mitochondria to the vitamin D status of chicks provided additional evidence that the major cytochrome P-450 species present in renal mitochondria is uniquely associated with vitamin D metabolism.  相似文献   

15.
This study has investigated the mechanism of steroid hydroxylation in bovine adrenocortical microsomes and mitochondria by employing NaIO4, NaClO2, and various organic hydroperoxides as hydroxylating agents and comparing the reaction rates and steroid products formed with those of the NADPH-dependent reaction. In the microsomal hydroxylating system, progesterone, 17α-hydroxyprogesterone, and androstenedione were found to act as substrates. Progesterone was chosen as the model substrate and was converted mainly to the 21-hydroxylated derivative in the presence of microsomal fractions fortified with hydroxylating agent. Using saturating levels of hydroxylating agent, NaIO4 was found to be the most effective in promoting progesterone hydroxylation followed by cumene hydroperoxide, t-butyl hydroperoxide, NADPH, NaClO2, and pregnenolone 17α-hydroperoxide. Evidence for cytochrome P450 involvement included a marked inhibition of the activity by substrates and modifiers of cytochrome P450 and by reagents that convert cytochrome P450 to cytochrome P420. Steroid hydroxylation was studied in adrenocortical mitochondria that had been previously depleted of endogenous pyridine nucleotides by aging for 1 h at 30 dgC in a phosphate-supplemented medium. Androstenedione was converted to its respective 6β-, 11β-, 16β-, and 19-hydroxylated derivatives when incubated with aged mitochondrial fractions fortified with hydroxylating agent whereas progesterone was hydroxylated in the 1β-, 6β-, and 15β- positions. These hydroxylations were completely abolished by preheating the mitochondria for 5 min at 95 dgC prior to assay, indicating the enzymic nature of the reactions. Deoxycorticosterone and deoxycortisol were effective substrates for NADPH-dependent enzymic 11β-hydroxylation but were extensively degraded nonenzymically to unidentified products in the presence of NaIO4 and hydroxylating agents other than NADPH and consequently could not be utilized as substrates in these reactions. Using androstenedione as substrate, NaIO4 was the most effective hydroxylating agent, followed by cumene hydroperoxide, NaClO2, t-butyl hydroperoxide, and NADPH. These hydroxylations were inhibited by substrates and modifiers of cytochrome P450 and by reagents that convert cytochrome P450 to cytochrome P420. A mechanism for steroid hydroxylation in adrenocortical microsomes and mitochondria is proposed in which the ferryl ion (compound I) of cytochrome P450 functions as the common “activated oxygen” species.  相似文献   

16.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

17.
Summary Cytochrome P450 in the mitochondria of the adrenal cortex functions in the monooxygenation reactions for the biosynthesis of various steroid hormones, such as cholesterol side chain cleavage, hydroxylation at 11-position and that at 18-position of the steroid structure. The cytochrome is firmly associated with the mitochondrial membrane and therefore can be isolated only by the aid of ionic or non-ionic detergent. Recently, two cytochromes P450 each catalyzing a specified reaction have been purified to a homogeneous state, that is, P450scc having cholesterol side chain cleavage activity and P45011 having 11-hydroxylation activity. The properties of these purified P450's as well as the other components of the monooxygenase system, adrenodoxin and adrenodoxin reductase, are, therefore, summarized and compared to those of P450 in the mitochondria) preparation in situ.Among many findings, both purified cytochromes P450 were revealed to be a low-spin type hemoprotein and their spin states were changed to a high-spin state by being complexed with the corresponding substrate. The binding of a substrate also facilitated the reduction of the cytochrome and appeared to increase the stability of the oxygenated form of cytochrome P450. These effects are important from the point of view that the primary role of the heme of cytochrome P450 is the activation of molecular oxygen. In addition, the results of our detailed kinetic studies on the transfer of electrons from adrenodoxin to cytochrome P450 in the reconstituted system have also been described Finally, the topology of adrenodoxin and the reductase were shown to be on the inner mitochondrial membrane by a peroxidase-labeled antibody method.  相似文献   

18.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

19.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

20.
Using a classical methodlogy of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulos) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-4509. It has been proven to be different from all preceedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-4509, does not recognize rat liver microsomes; thus this cytochrome P-4509 is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quatitative polymorphism. In reconstituted system, cytochrome P-4509 is able to hydroxylate all substrates tested but is not specific on any; its exatc role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号