首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Clay 《Oecologia》1987,73(3):358-362
Summary Many grasses are infected by endophytic fungi that grow intercellularly in leaves, stems, and flowers and are transmitted maternally by hyphal growth into ovules and seeds. The seed biology and seedling growth of endophyte-infected and uninfected perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) were investigated under controlled environmental conditions. The percentage of filled seeds produced by infected tall fescue was over twice of uninfected tall fescue; infected and uninfected perennial reegrass had similar percentages. Weights of seeds from infected and uninfected plants were similar in both species. Seeds from infected plants of both species exhibited a higher rate of germination than seeds from uninfected plants. Shoot growth in the greenhouse was compared by making three sequential harvests of above-ground plant parts from infected and uninfected plants of both species. Infected perennial ryegrass plants produced significantly more biomass and tillers than uninfected plants after 6 and 10 weeks of growth and significantly more biomass after 14 weeks of growth. Infected tall fescue plants produced significantly more biomass and tillers than uninfected plants after 10 and 14 weeks of growth. The physiological mechanism of enhancement of growth is not known. The results of this study suggest that infected plants may have a selective advantage in populations with uninfected members.  相似文献   

2.
The relationship between vertically transmitted asexual fungal grass endophytes and their hosts is considered to be mutualistic. Results from agronomic field support this line of reasoning but recent studies have shown more variable results in natural systems. We investigated how high and low nutrient and water treatments affected biomass allocation patterns of endophyte‐infected and uninfected Festuca pratensis and F. rubra in greenhouse experiments over two growing seasons. Irrespective of infection status, both grass species showed improved performance on highly fertilized and watered soils. However, infected F. pratensis plants produced larger tillers than endophyte‐free plants on soil low in nutrients and water in the first growing season, although they (E+) otherwise showed decreased performance on nutrient‐poor soil. In low nutrient and water conditions, endophyte‐infected plants produced less tillers and had lower total biomass compared to uninfected plants, and displayed a negative phenotypic correlation between seed production and vegetative growth. The latter indicates costs of reproduction when the plant shares common resources with the fungal endophyte. However, endophyte infection status (E+, E?) interacted significantly with the soil fertilisation in terms of plant growth, having a stronger positive effect on growth in infected F. pratensis plants. In F. rubra, endophyte‐infected plants showed higher vegetative growth in fertilized and watered soils compared to uninfected plants. However, infected plants tended to produce fewer inflorescences. This had no effect on seed production, perhaps because seed production was partly replaced by asexual pseudovivipary. Contrary to the general assumption in the literature that fungal endophytes are plant mutualists, these findings suggest that the costs of endophytes may outweigh their benefits in resource limited conditions. However, the costs of endophyte infections appear to differ among the grass species studied; costs of endophytes were mainly detected in F. pratensis under low nutrient conditions. We propose that differences in response to endophyte infection in these species may depend on the differences in life‐history strategies and environmental requirements of these two fescue and fungal species and may change during the life span of the plant.  相似文献   

3.
Jean J. Pan  Keith Clay 《Oikos》2002,99(1):37-46
Many plant species have the ability to expand laterally through space by clonal growth. Plant pathogens can affect clonal growth characteristics thereby altering the success of host plants within populations and of clonal species within communities. We conducted a greenhouse experiment to determine the effects of the systemic fungal pathogen, Epichloë glyceriae , on clonal growth patterns of its host grass, Glyceria striata . We found that infected and uninfected plants produced similar total biomass and numbers of tillers plus primary stolons per mother ramet. However, biomass allocation to tillering (vegetative growth) vs stolon production (clonal growth) was significantly affected by pathogen infection. Infected plants produced more stolons and clonal growth biomass than uninfected plants while mother ramets of uninfected plants produced more tillers and biomass than infected plants. Stolon architecture of infected and uninfected plants also differed. In two of three populations, infected plants produced stolons with greater biomass and shorter spacer lengths, even though mean stolon lengths were similar for infected and uninfected plants. These results contrast strongly with most other clonal plant-pathogen systems where infected plants are less vigorous and have reduced clonal growth compared to uninfected plants. Greater clonal growth may be an effective mechanism for host genotypes to persist and spread when seed production is prevented, as is the case with castrating pathogens like Epichloë glyceriae .  相似文献   

4.
Summary The interaction between the clonal dicotyledonous herb Trientalis europaea and the systemic smut fungus Urocystis trientalis was investigated. By marking individual plants in the field and transplanting plants to the greenhouse, disease transmission and the effect of disease on survival and fecundity of plants were estimated. Field data showed that 50% of the diseased and none of the healthy plants died during summer. Surviving diseased plants produced significantly fewer winter buds than healthy plants (means ±S.E. 1.12±0.05 and 1.88±0.07, respectively). Seed capsule production was low overall and did not differ between diseased and healthy plants. Disease was not seed-transmitted and transmission from infected mother plants to daughter ramets was not total (means 33% and 46%, in two experiments). Disease transmission was also influenced by light conditions.  相似文献   

5.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

6.
This study investigated the demographic consequences of fungal infection of a perennial grass, Stipa leucotricha. The rate of parasitism of this grass by the host-specific, systemic fungus Atkinsonella texensis varies over short distances. Infection was frequent (57% of plants) in mottes (clusters of woody plants) but rarer in adjacent open grasslands (9%). To test the hypothesis that the relative performance of infected and uninfected plants differed in the two habitats, infected and uninfected genotypes were collected from mottes in a central Texas population, propagated in the green-house and then transplanted into the same site in replicate plots within mottes, at the edges of mottes, and in open grassy areas. Demographic data were recorded for 30 months over three growing seasons. Plants were observed to lose and gain infection. Infection had no significant effect on plant survival, tiller number or dry mass although infected plants tended to be larger. Uninfected plants had a significantly higher probability of setting seed but there were no differences in seed production by reproductive plants. There were significant effects of planting environment on all of these measures. Motte edges were most favorable for S. leucotricha transplants while motte interiors were least favorable and open areas were intermediate. There was no evidence of habitat x infection interactions; therefore the fungal infection had similar effects in different habitats. The high frequency of infection in motte habitats is best explained by more efficient contagious spread there. The favorability of motte edges for plant growth is substantially offset by higher infection rates at the edges of mottes.  相似文献   

7.
Rhopalosiphum padi L. (Homoptera: Aphididae) is sensitive to loline alkaloids present in tall fescue, Festuca arundinacea Shreb., infected with the endophytic fungus, Acremonium coenophialum Morgan-Jones & Gams. Aphid survival was higher on endophyte-free plants regardless of plant age after germination or age of regrowth tissue after clipping. Survival of aphids on endophyte-infected grass was lower on young tissue but increased as plants aged, although it never reached the same level on endophyte-free plants. Both N-formyl and N-acetyl loline increased as uncut or regrowth tissue aged; however, this was influenced by the age of the plant at the initial cut and the clipping frequency. Although even small amounts of loline cause high aphid mortality, the aphids are able to survive on endophyte-infected plants if the tillers have senescing leaves which contain lower amounts of loline. Preference for senescing leaves may help R. padi avoid plant parts containing high amounts of toxic allelochemicals, thus contributing to higher numbers of aphids on older, endophyte-infected plants.  相似文献   

8.
Rising global carbon dioxide levels may lead to profound changes in plant composition, regardless of the degree of global warming that may result from the accumulation of this greenhouse gas. We studied the interaction of a CO2 doubling and two levels of nitrogen fertilizer on the growth and chemical composition of tall fescue (Festuca arundinacea Schreber cv. KY‐31) when infected and uninfected with the mutualistic fungal endophyte Neotyphodium coenophialum Morgan‐Jones and Gams. Two‐year‐old plants were harvested to 5 cm every 4 weeks, and after 12 weeks of growth plants grown in twice ambient CO2 concentrations: photosynthesized 15% more; produced tillers at a faster rate; produced 53% more dry matter (DM) yield under low N conditions and 61% more DM under high N conditions; the % organic matter (OM) was little changed except under elevated CO2 and high N when %OM increased by 3%; lignin decreased by 14%; crude protein (CP) concentrations (as %DM) declined by 21%; the soluble CP fraction (as %CP) increased by 13%; the acid detergent insoluble CP fraction (as %CP) increased by 12%, and in vitro neutral detergent fiber digestibility declined by 5% under high N conditions but not under low N. Plants infected with the endophytic fungus: photosynthesized 16% faster in high N compared with under low N; flowered earlier than uninfected plants; had 28% less lignin in high N compared with under low N; and had much smaller reductions in CP concentration (as %DM) and smaller increases in the soluble CP fraction (as %CP) and the acid detergent insoluble CP fraction (as %CP) under elevated CO2. Such large and varied changes in plant quality are likely to have large and significant effects on the herbivore populations that feed from these plants.  相似文献   

9.
W.Z. Tan  Q.J. Li  L. Qing 《BioControl》2002,47(4):463-479
Alligatorweed (Alternanthera philoxeroidesG.) has become a serious weed in different crops in China. A fungal pathogen was found in Chongqing and Sichuan Provinces and was identified as a species in the Fusarium genus. The fungus produced macroconidia and chlamydospores abundantly on potato sucrose agar (PSA) plates. The bestconidial production and germination and colonygrowth of Fusarium sp. were at 23–31°C and pH 6.7–7.0. Light period and flooding did not affect fungal growth and conidium formation. The herbicides, glyphosate and paraquat, inhibited the fungal development in vitro. The fungus did not affect seed germination and seedling growth of paddy rice, wheat, maize, oilseed rape and broad bean inlaboratory or greenhouse trials. Inoculum density and wetness duration influenced the efficiency of Fusarium sp. to control alligatorweed; a concentration of 1.0 × 105 spores–1 ml and 12 h of high humidity duration after inoculation produced goodinfections on the weed at 23°C in the laboratory. When the fungus was applied to alligatorweed grown in greenhouse and in the field, good biocontrol efficiency was obtained: the plants started to wilt after four to five (greenhouse) or six days (field), and were killed 9–10 (greenhouse) or 13–14 (field) days after spraying the fungal inoculum. This was similar to the control efficiency resulting from glyphosate treatment. Therefore, this Fusarium sp. appeared to be a good candidatefor further studies and a promising biocontrol agent to manage alligatorweed in some terrestrial and aquatic crops.  相似文献   

10.
Summary Five hundred and twenty-four plants of a triploid, sexually sterile hybrid napiergrass (Pennisetum americanum x P. purpureum; 3x=21) were regenerated from embryogenic callus cultures obtained from segments of young inflorescences. Replicated field trials were conducted for two consecutive years to compare the biomass yield, phenotype and cytology of tissue culture regenerants (TC) and vegetatively propagated (V) plants. In the first year total biomass yield of TC plants was significantly greater than V plants but there was no significant difference in the second year. TC plants had more tillers compared to V plants. V plants did not show any morphological variability. The TC population also exhibited a high degree of phenotypic stability (96%). There were 23 phenotypic variants in the TC population of 524, most of them being more dwarf and late-flowering. Detailed morphological analysis of the TC-variant plants suggests that they very likely arose from only a few variant cell lines. Cytological analysis indicated stability of the triploid status in randomly selected regenerants. Two of the morphological variants were hexaploids (6x=42). It is concluded that embryogenic callus cultures can provide useful alternative for the rapid propagation of hybrid napier-grass which is commonly propagated by cuttings.  相似文献   

11.
Selected bacterial strains isolated from the region of peanut pod development (geocarposphere) and two additional bacterial strains were screened as potential biological control agents against Aspergillus flavus invasion and subsequent aflatoxin contamination of peanut in laboratory, greenhouse, and field trials. All 17 geocarposphere strains tested delayed invasion of young roots and reduced colonization by the fungus in a root-radicle assay used as a rapid laboratory prescreen. In a greenhouse study, seven bacterial strains significantly reduced pod colonization by A. flavus compared to the control. In a field trial, conducted similarly to the greenhouse assay, pods sampled at mid-peg from plants seed-treated with suspensions of either 91A-539 or 91A-550 were not colonized by A. flavus, and the incidence of pods invaded from plants treated with either 91A-539 or 91A-599 was consistently lower than nonbacterized plants at each of five sampling dates. At harvest, 8 geocarposphere bacterial strains significantly lowered the percentage of pods colonized (> 51%) compared to the control. Levels of seed colonization ranged from 1.3% to 45% and did not appear related to aflatoxin concentrations in the kernels.  相似文献   

12.
Platenkamp GA  Foin TC 《Oecologia》1990,83(2):201-208
Summary A field experiment was performed to estimate the relative importance of neighbors and the rest of the environment for the growth, mortality and reproductive output of cloned individuals of the perennial bunchgrass Anthoxanthum odoratum. Single cloned Anthoxanthum tillers (targets) were reciprocally transplanted between a xeric and a mesic grassland site with one of four neighbor treatments: (1) no neighbors, (2) Anthoxanthum neighbors transplanted from the xeric site, (3) Anthoxanthum neighbors from the mesic site, and (4) Holcus lanatus neighbors. Targets without neighbors had a twofold higher two year reproductive output (RO) than those with neighbors, but there was no difference among neighbor treatments. No overall site effect on two year RO was found, because the site with the highest mortality among targets produced larger plants, with more inflorescences. Neighborhood competition was more intense at the xeric site than at the mesic site. The effects of environmental and neighborhood variation on Anthoxanthum were additive, rather than interactive. Population origin did not affect target performance significantly. Anthoxanthum neighbors of different origin did respond differentially to transplant site. There was a strong target genotype x site interaction, but no genotype x neighborhood interaction.  相似文献   

13.
Tropical soda apple (Solanum viarum Dunal (Solanaceae) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of tropical soda apple since 2003. Tropical soda apple is a host of several plant viruses, including the newly described tropical soda apple mosaic virus (TSAMV). We investigated the influence of TSAMV infection of tropical soda apple plants on developmental time, leaf tissue consumption, longevity, fecundity, and feeding preference of G. boliviana, and also tested transmission of the virus by the beetle. Developmental time was approximately 10% slower, and adults consumed only about 50% as much leaf tissue, for beetles fed on infected plants compared to uninfected plants. Longevity did not differ between females reared on infected and uninfected plants, but females fed on uninfected plants produced 71% more eggs than those fed on infected plants. Adult G. boliviana preferentially fed on uninfected plants when given a choice. There was no evidence of TSAMV transmission by G. boliviana. The potential impacts of TSAMV infection on the effectiveness of G. boliviana as a biological control agent are discussed.  相似文献   

14.
Field-based experiments were conducted to evaluate the fate and infectivity of the entomopathogenic fungus Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes) in grasshopper cadavers in the Sahel. Unlike uninfected cadavers, which were rapidly scavenged, those infected with the fungus persisted in the environment for a number of weeks. The environmental factor most associated with cadaver disappearance was rainfall. The high environmental humidity associated with rainfall was also required for sporulation of the fungus on host cadavers, although the likelihood of sporulation differed between microsites. Characteristics of the infection profile from infective cadavers were investigated by the sequential exposure of uninfected hosts to sporulating cadavers in field cages. This experiment revealed that cadavers remained infective for > 30 days, with the net infectivity changing through time. The most likely explanation for these changes is climatic influences on both the fungus and host. High humidity was not required for infection. A measurement of the transmission coefficient between healthy hosts and sporulating cadavers in the field was obtained at a realistic density of infectious cadavers. This revealed a figure of 0.45 m2 day–1. Overall, these experiments show that following host death, M. anisopliae var. acridum can be persistent in the environment, sporulate on host cadavers and reinfect new hosts at a realistically low field density, although at least in arid or semi-arid areas, rainfall may be critical to the horizontal transmission of this pathogen.  相似文献   

15.
Twenty-seven mature cotton bolls with Aspergillus flavus Link colonies naturally occurring on the surface of the boll or lint were collected in the field in Arizona along with their subtending stems and peduncles. Bolls inoculated through the carpel wall 30 days after anthesis were allowed to mature in the field and were collected in the same manner. The seed and stem and peduncle sections of each boll were surface-sterilized, plated on agar media and observed for A. flavus. Seventy-eight percent of the naturally contaminated bolls with A. flavus in the seed also had the fungus in the stem and peduncle, whereas only 31% of the naturally contaminated bolls with no A. flavus in the seed had the fungus in the stem or peduncle. This difference was significant (P=0.0125), indicating a positive relationship between seed infection and stem and peduncle infection. All of the bolls inoculated through the carpel wall had A. flavus in the seed, but only 11% of the stem and peduncle sections were infected, indicating that the fungus does not readily grow downward from the boll into the supporting stem or peduncle.This unidirectional pattern of movement (upward) was further substantiated in greenhouse experiments where cotton seedlings were inoculated at the cotyledonary leaf scar with A. flavus and plants were sequentially harvested, surface sterilized and plated. Aspergillus flavus was isolated from the cotyledonary leaf scar, flower buds, developing bolls, and stem sections in the upper portion of the plant. It was never isolated from roots or stem sections below the cotyledonary node, again indicating that the fungus does not readily move downward through the plant.  相似文献   

16.
Summary To assess the scale of micro-environmental heterogeneity perceived by two co-occurring grass species, Anthoxanthum odoratum and Danthonia spicata, cloned tillers of each species were planted into the natural habitat at a range of spacings (from 2 cm to more than 2 m apart) and measured for survival and fecundity over three years. A. odoratum responded to heterogeneity at a scale of 4–8 cm and at a scale of 2–8 m but not to intermediate scales. D. spicata did not respond significantly to heterogeneity. However one genotype infected with the systemic fungus Atkinsonella hypoxylon showed a large response to heterogeneity at both small and large spatial scales. The results showed that the scale and level of environmental heterogeneity as measured by its fitness impact depends on the species and genotype involved. The results indicate that small scale environmental heterogeneity could play a role in the maintenance of sexual reproduction in A. odoratum.  相似文献   

17.
Two cultivars of Phaseolus vulgaris L., one responsive to colonization with microsymbionts (Mexico 309) and one less-responsive (Rio Tibagi) were grown in Leonard jars containing sand/vermiculite under greenhouse conditions. Bean plants were either left non-inoculated (controls) or were inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899). Plants from the Mexico 309 cultivar maintained a higher growth rate, supported proportionately more nodules and mycorrhizae, and assimilated relatively more N or P when colonized by Rhizobium or Glomus, respectively, than did plants of the Rio Tibagi cultivar. Estimated specific nodule activity for Mexico 309 beans was more than twice that of Rio Tibagi, whereas the specific phosphorus uptake rate (SPUR) was 35% greater in the non-inoculated roots of Rio Tibagi compared to Mexico 309. Colonization by G. etunicatum more than doubled the SPUR for each cultivar compared to control roots. New acid phosphatase isozymes appeared in VAM-colonized roots of both cultivars compared to controls. Acid and alkaline phosphatase activities were significantly higher in G. etunicatum-colonized Mexico 309 roots, but not in Rio Tibagi mycorrhizae, compared to uninfected roots. Polyphosphate hydrolase activity was elevated in mycorrhizae of both cultivars compared to control roots. These results indicate that the dependence of a host on a specific endophyte increases when there are limitations to the supply of a nutrient that the endophyte can provide. The greater the increase in absorption or utilization capacity following colonization by the microsymbiont, the greater the dependence by the host. More importantly, identification of enzymatic activities that influence these plant-microbe associations opens the possibility that the specific genes that code for these enzymes could be targeted for future manipulation.  相似文献   

18.
Abstract Lolium multiflorum is a successful invader of postagricultural succession in the Inland Pampa grasslands in Argentina, becoming a dominant species in the plant community. Individual plants of this annual species are naturally highly infected with fungal endophytes (Neotyphodium sp.) from early successional stages. We assessed the effect of Neotyphodium infection on the biology of L. multiflorum. We evaluated growth attributes between endophyte infected (E+) and uninfected (E–) plants under non‐competitive conditions during the normal growing season. E+ plants produced significantly more vegetative tillers and allocated more biomass to roots and seeds. Although seed germination rates were greater in endophyte free plants, the rate of emergence and the final proportion of emerged seedlings were similar between the biotypes. The greater production of vegetative tillers, and the greater resource allocation to roots and seeds are likely to confer an ecological advantage to E+ plants, thus enabling their dominance over the E– individuals in natural grasslands.  相似文献   

19.
The Agrobacterium rhizogenes rolD gene, coding for an ornithine cyclodeaminase involved in the biosynthesis of proline from ornithine, has been inserted in Lycopersicon esculentum cv Tondino with the aim of studying its effects on plant morphological characters including pathogen defense response. The analysis of plants transgenic for rolD did not show major morphological modifications. First generation transgenic plants however were found to flower earlier, and showed an increased number of inflorescences and higher fruit yield. Transformed plants were also analysed for parameters linked to pathogen defense response, i.e. ion leakage in the presence of the toxin produced by the fungus Fusarium oxysporum f. sp. lycopersici, and expression of the pathogenesis-related PR-1 gene. All the plants harbouring the rolD gene were shown to be more tolerant to the toxin in ion leakage experiments, with respect to the untransformed regenerated controls and the cv Tondino. PR-1 gene expression was quantitated by means of real-time PCR both at the basal level and after treatment with salicylic acid, an inducer of Systemic Acquired Resistance. In both cases the amount of PR-1 mRNA was higher in the transgenic plants. It seems therefore that the transformation of tomato plants with rolD could lead to an increased competence for defense response, as shown by toxin tolerance and increased expression of the Systemic Acquired Resistance marker gene PR-1. The results are finally discussed in view of their possible economic relevance.Communicated by G. Wenzel  相似文献   

20.
Tests of seven rare and endangered native North American Cirsium species and four modern artichoke lines were requested in response to a proposal for introduction of Puccinia carduorum into the United States for biological control of musk thistle (Carduus nutans ssp. leiophyllus). These tests were supplemental to an earlier extensive host-range study that established P. carduorum from musk thistle as host specific, useful for biological control, and suitable for limited field tests in Virginia. Test plants in the current study were evaluated in support of a proposal to use the rust in the western United States, and particularly, in California. None of the test plants in this study had been evaluated in previous assessments and all were either rare, endangered or threatened in California. Tests were conducted in both field and greenhouse settings. Field tests were run for two seasons, and test plants were inoculated by natural spread of the pathogen from source plants inside rings of test plants. Greenhouse tests involved direct inoculation under optimal conditions of dew and temperature (18–20 °C, 16 h) for infection. None of the seven Cirsium species or subspecies tested became infected by P. carduorum, either in field or greenhouse tests, compared to infection of 98% of the individual musk thistle plants (n = 102) from all the studies. Modern artichoke cultivars were tested only by direct inoculation under optimal greenhouse conditions. All artichoke plants (n = 115) either were immune (no macroscopic symptoms, n = 69) or at most, resistant (n = 46); pustules on all but two of the resistant plants were very small (0.30 mm diam). Despite infections on artichokes, P. carduorum could not be maintained on artichokes under optimal greenhouse conditions. These results confirm earlier findings from host-range tests and risk assessments of P. carduorum. This information suggests that rare, threatened, or endangered Cirsium spp. and modern artichoke cultivars are not likely to be adversely affected by the use of P. carduorum for biological control of musk thistle. These data have been reviewed by grower groups and regulatory agencies in a proposal for permission to use the rust for musk thistle control throughout the United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号