首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established.  相似文献   

2.
Lu C  Xie G  Liu M  Zhu H  Lei B 《PloS one》2012,7(5):e37556
The heme acquisition machinery in Group A Streptococcus (GAS) consists of the surface proteins Shr and Shp and ATP-binding cassette transporter HtsABC. Shp cannot directly acquire heme from methemoglobin (metHb) but directly transfers its heme to HtsA. It has not been previously determined whether Shr directly relays heme from metHb to Shp. Thus, the complete pathway for heme acquisition from metHb by the GAS heme acquisition machinery has remained unclear. In this study, the metHb-to-Shr and Shr-to-Shp heme transfer reactions were characterized by spectroscopy, kinetics and protein-protein interaction analyses. Heme is efficiently transferred from the β and α subunits of metHb to Shr with rates that are 7 and 60 times greater than those of the passive heme release from metHb, indicating that Shr directly acquires heme from metHb. The rapid heme transfer from Shr to Shp involves an initial heme donor/acceptor complex and a spectrally and kinetically detectable transfer intermediate, implying that heme is directly channeled from Shr to Shp. The present results show that Shr speeds up heme transfer from metHb to Shp, whereas Shp speeds up heme transfer from Shr to HtsA. Furthermore, the findings demonstrate that Shr can interact with metHb and Shp but not HtsA. Taken together with our published results on the Shp/HtsA reaction, these findings establish a model of the heme acquisition pathway in GAS in which Shr directly extracts heme from metHb and Shp relays it from Shr to HtsA.  相似文献   

3.
The surface protein Shp of Streptococcus pyogenes rapidly transfers its hemin to HtsA, the lipoprotein component of the HtsABC transporter, in a concerted two-step process with one kinetic phase. The structural basis and molecular mechanism of this hemin transfer have been explored by mutagenesis and truncation of Shp. The heme-binding domain of Shp is in the amino-terminal region and is functionally active by itself, although inclusion of the COOH-terminal domain speeds up the process approximately 10-fold. Single alanine replacements of the axial methionine 66 and 153 ligands (Shp(M66A) and Shp(M153A)) cause formation of pentacoordinate hemin-Met complexes. The association equilibrium constants for hemin binding to wild-type, M66A, and M153A Shp are 5,300, 22,000, and 38 microM(-1), respectively, showing that the Met(153)-Fe bond is critical for high affinity binding and that Met(66) destabilizes hemin binding to facilitate its rapid transfer. Shp(M66A) and Shp(M153A) rapidly bind to hemin-free HtsA (apoHtsA), forming stable transfer intermediates. These intermediates appear to be Shp-hemin-HtsA complexes with one axial ligand from each protein and decay to the products with rate constants of 0.4-3 s(-1). Thus, the M66A and M153A replacements alter the kinetic mechanism and unexpectedly slow down hemin transfer by stabilizing the intermediates. These results, in combination with the structure of the Shp heme-binding domain, allow us to propose a "plug-in" mechanism in which side chains from apoHtsA are inserted into the axial positions of hemin in Shp to extract it from the surface protein and pull it into the transporter active site.  相似文献   

4.
The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface.  相似文献   

5.
The heme-binding proteins Shp and HtsA are part of the heme acquisition machinery found in Streptococcus pyogenes. The hexacoordinate heme (Fe(II)-protoporphyrin IX) or hemochrome form of holoShp (hemoShp) is stable in air in Tris-HCl buffer, pH 8.0, binds to apoHtsA with a K(d) of 120 +/- 18 microm, and transfers its heme to apoHtsA with a rate constant of 28 +/- 6s(-1) at 25 degrees C, pH 8.0. The hemoHtsA product then autoxidizes to the hexacoordinate hemin (Fe(III)-protoporphyrin IX) or hemichrome form (hemiHtsA) with an apparent rate constant of 0.017 +/- 0.002 s(-1). HemiShp also rapidly transfers hemin to apoHtsA through a hemiShp.apoHtsA complex (K(d) = 48 +/- 7 microM) at a rate approximately 40,000 times greater than the rate of simple hemin dissociation from hemiShp into solvent (k(transfer) = 43 +/- 3s(-1) versus k(-hemin) = 0.0003 +/- 0.00006 s(-1)). The rate constants for hemin binding to and dissociation from HtsA (k'(hemin) approximately 80 microm(-1) s(-1), k(-hemin) = 0.0026 +/- 0.0002 s(-1)) are 50- and 10-fold greater than the corresponding rate constants for Shp (k(hemin) approximately 1.6 microM(-1) s(-1), k(-hemin) = 0.0003 s(-1)), which implies that HtsA has a more accessible active site. However, the affinity of apoHtsA for hemin (k(hemin) approximately 31,000 microm(-1)) is roughly 5-fold greater than that of apoShp (k(hemin) approximately 5,300 microM(-1)), accounting for the net transfer from Shp to HstA. These results support a direct, rapid, and affinity-driven mechanism of heme and hemin transfer from the cell surface receptor Shp to the ATP-binding cassette transporter system.  相似文献   

6.
The periplasmic binding protein HmuT from Yersinia pestis (YpHmuT) is a component of the heme uptake locus hmu and delivers bound hemin to the inner-membrane-localized, ATP-binding cassette (ABC) transporter HmuUV for translocation into the cytoplasm. The mechanism of this process, heme transport across the inner membrane of pathogenic bacteria, is currently insufficiently understood at the molecular level. Here we describe the crystal structures of the substrate-free and heme-bound states of YpHmuT, revealing two lobes with a central binding cleft. Superposition of the apo and holo states reveals a minor tilting motion of the lobes surrounding concomitant with heme binding. Unexpectedly, YpHmuT binds two stacked hemes in a central binding cleft that is larger than those of the homologous periplasmic heme-binding proteins ShuT and PhuT, both of which bind only one heme. The hemes bound to YpHmuT are coordinated via a tyrosine side chain that contacts the Fe atom of one heme and a histidine that contacts the Fe atom of the other heme. The coordinating histidine is only conserved in a subset of periplasmic heme binding proteins suggesting that its presence predicts the ability to bind two heme molecules simultaneously. The structural data are supported by spectroscopic binding studies performed in solution, where up to two hemes can bind to YpHmuT. Isothermal titration calorimetry suggests that the two hemes are bound in discrete, sequential steps and with dissociation constants (KD) of ∼ 0.29  and ∼ 29 nM, which is similar to the affinities observed in other bacterial substrate binding proteins. Our findings suggest that the cognate ABC transporter HmuUV may simultaneously translocate two hemes per reaction cycle.  相似文献   

7.
The iron-regulated surface determinants (Isd) of Staphylococcus aureus, including surface proteins IsdA, IsdB, IsdC, and IsdH and ATP-binding cassette transporter IsdDEF, constitute the machinery for acquiring heme as a preferred iron source. Here we report hemin transfer from hemin-containing IsdA (holo-IsdA) to hemin-free IsdC (apo-IsdC). The reaction has an equilibrium constant of 10 +/- 5 at 22 degrees C in favor of holo-IsdC formation. During the reaction, holo-IsdA binds to apo-IsdC and then transfers the cofactor to apo-IsdC with a rate constant of 54.3 +/- 1.8 s(-1) at 25 degrees C. The transfer rate is >70,000 times greater than the rate of simple hemin dissociation from holo-IsdA into solvent (k transfer = 54.3 s(-1) versus k -hemin = 0.00076 s(-1)). The standard free energy change, Delta G 0, is -27 kJ/mol for the formation of the holo-IsdA-apo-IsdC complex. IsdC has a higher affinity for hemin than IsdA. These results indicate that the IsdA-to-IsdC hemin transfer is through the activated holo-IsdA-apo-IsdC complex and is driven by the higher affinity of apo-IsdC for the cofactor. These findings demonstrate for the first time in the Isd system that heme transfer is rapid, direct, and affinity-driven from IsdA to IsdC. These results also provide the first example of heme transfer from one surface protein to another surface protein in Gram-positive bacteria and, perhaps most importantly, indicate that the mechanism of activated heme transfer, which we previously demonstrated between the streptococcal proteins Shp and HtsA, may apply in general to all bacterial heme transport systems.  相似文献   

8.
Shepherd M  Heath MD  Poole RK 《Biochemistry》2007,46(17):5030-5037
NikA is a periplasmic binding protein involved in nickel uptake in Escherichia coli. NikA was identified as a heme-binding protein in the periplasm of anaerobically grown cells overexpressing CydDC, an ABC transporter that exports reductant to the periplasm. CydDC-overexpressing cells accumulate a heme biosynthesis-derived pigment, P-574. For further biochemical and spectroscopic analysis, unliganded NikA was overexpressed and purified. NikA was found to comigrate with both hemin and protoporphyrin IX during gel filtration. Furthermore, tryptophan fluorescence quenching titrations demonstrated that both hemin and protoporphyrin IX bind to NikA with similar affinity. The binding affinity of NikA for these pigments (Kd approximately 0.5 microM) was unaltered in the presence and absence of saturating concentrations of nickel, suggesting that these tetrapyrroles bind to NikA in a manner independent of nickel. To test the hypothesis that NikA is required for periplasmic heme protein assembly, the effects of a nikA mutation (nikA::Tn5, Km(R) insertion) on accumulation of P-574 by CydDC-overexpressing cells was assessed. This mutation significantly lowered P-574 levels, implying that NikA may be involved in P-574 production. Thus, in the reducing environment of the periplasm, NikA may serve as a heme chaperone as well as a periplasmic nickel-binding protein. The docking of heme onto NikA was modeled using the published crystal structure; many of the predicted complexes exhibit a heme-binding cleft remote from the nickel-binding site, which is consistent with the independent binding of nickel and heme. This work has implications for the incorporation of heme into b- and c-type cytochromes.  相似文献   

9.

Background  

The Streptococcus pyogenes or Group A Streptococcus (GAS) genome encodes three ABC transporters, namely, FtsABCD, MtsABC, and HtsABC, which share homology with iron transporters. MtsABC and HtsABC are believed to take up ferric (Fe3+) and manganese ions and heme, respectively, while the specificity of FtsABCD is unknown.  相似文献   

10.
Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2N2; residues 183–303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2N2 undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron.  相似文献   

11.
Hemoglobin is examined as a model system for intrinsic photoelectron labeling experiments. The absolute photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin thin films were measured in the 180-230 nm wavelength region. Hemin exhibits a quantum yield of approximately 6 × 10-4 electrons per incident photon at 180 nm, 9 × 10-5 electrons per incident photon at 210 nm, and 2 × 10-6 electrons per incident photon at 230 nm. At all wavelengths the hemin curve lies approximately a factor of 20 above that of hemoglobin and two orders of magnitude above that of apohemoglobin. High image contrast is observed between hemin and apohemoglobin in low magnification photoelectron micrographs, suggesting the feasibility of intrinsic labeling studies involving heme proteins. The quantum yield of hemoglobin is discussed in terms of linear contributions from heme groups and protein weighted by their relative surface areas. The fractional surface areas based on the known structure of hemoglobin are consistent with values derived from the quantum yields of hemin and apohemoglobin.  相似文献   

12.
Lactoferrin (Lf) and transferrin (Tf) are iron-binding proteins that can bind various metal ions. This study demonstrates the heme-binding activity of bovine Lf and Tf using biotinylated hemin. When both proteins were coated on separate plate wells, each directly bound biotinylated hemin. On the other hand, when biotinylated hemin was immobilized on an avidin-coated plate, soluble native Lf bound to the immobilized biotinylated hemin whereas native Tf did not, suggesting that a conformational change triggered by coating on the plate allows the binding of denatured Tf with hemin. Incubation of Lf with hemin-agarose resulted in negligible binding of Lf with biotinylated hemin. Lf in bovine milk also bound to immobilized biotinylated hemin. These results demonstrate that bovine Lf has specific heme-binding activity, which is different from Tf, suggesting that either Tf lost heme-binding activity during its evolution or that Lf evolved heme-binding activity from its Tf ancestral gene. Additionally, Lf in bovine milk may bind heme directly, but may also bind heme indirectly by interaction with other milk iron- and/or heme-binding proteins.  相似文献   

13.
The heme oxygenase ChuZ is part of the iron acquisition mechanism of Campylobacter jejuni, a major pathogen causing enteritis in humans. ChuZ is required for C. jejuni to use heme as the sole iron source. The crystal structure of ChuZ was resolved at 2.5 Å, and it was revealed to be a homodimer with a split-barrel fold. One heme-binding site was at the dimer interface and another novel heme-binding site was found on the protein surface. Heme was bound in this site by four histidine side-chains through hydrophobic interactions. Based on stoichiometry studies and comparisons with other proteins, the possibility that similar heme-binding site exists in homologous proteins and its possible functions are discussed. The structural and mutagenesis analyses reported here establish ChuZ and ChuZ homologs as a new bacterial heme oxygenase family apart from the canonical and IsdG/I families. Our studies provide insight into the enzymatic mechanisms and structure–function relationship of ChuZ.  相似文献   

14.
The cell-surface lipoprotein SiaA, a component of the SiaABC transporter, acts as the primary receptor for heme in the infamous human pathogen Streptococcus pyogenes. However, little is known about the molecular mechanism of heme binding and release as well as the role of heme-binding ligands that contribute to the uptake of heme into the pathogenic bacteria. The present report aims to clarify the coordination properties of heme iron in SiaA. By substitution of either Met79 or His229 with alanine, the mutant M79A and H229A proteins display significantly decreased heme-binding affinity and substantially increased heme-release rates, as compared with wild-type SiaA protein. Both fluorescence and circular dichroism spectra indicated that heme binding results in alterations in the secondary structure of the protein. Heme release from SiaA is a stepwise process in which heme disassociates firstly from Met79 and then from His229 with distinct conformational changes. His229 may serve as an anchor for heme binding in SiaA and thus may play a major role in the stability of the coordination between heme and the protein.  相似文献   

15.
Hemopexin is a serum, CSF, and neuronal protein that is protective after experimental stroke. Its efficacy in the latter has been linked to increased expression and activity of heme oxygenase (HO)-1, suggesting that it facilitates heme degradation and subsequent release of cytoprotective biliverdin and carbon monoxide. In this study, the effect of hemopexin on the rate of hemin breakdown by CNS cells was investigated in established in vitro models. Equimolar hemopexin decreased hemin breakdown, as assessed by gas chromatography, by 60–75% in primary cultures of murine neurons and glia. Extracellular hemopexin reduced cell accumulation of 55Fe-hemin by over 90%, while increasing hemin export or extraction from membranes by fourfold. This was associated with significant reduction in HO-1 expression and neuroprotection. In a cell-free system, hemin breakdown by recombinant HO-1 was reduced over 80% by hemopexin; in contrast, albumin and two other heme-binding proteins had no effect. Although hemopexin was detected on immunoblots of cortical lysates from adult mice, hemopexin knockout per se did not alter HO activity in cortical cells treated with hemin. These results demonstrate that hemopexin decreases the accumulation and catabolism of exogenous hemin by neural cells. Its beneficial effect in stroke models is unlikely to be mediated by increased production of cytoprotective heme breakdown products.  相似文献   

16.
The crystal structure of a heme oxygenase (HO) HugZ from Helicobacter pylori complexed with heme has been solved and refined at 1.8 Å resolution. HugZ is part of the iron acquisition mechanism of H. pylori, a major pathogen of human gastroenteric diseases. It is required for the adaptive colonization of H. pylori in hosts. Here, we report that HugZ is distinct from all other characterized HOs. It exists as a dimer in solution and in crystals, and the dimer adopts a split-barrel fold that is often found in FMN-binding proteins but has not been observed in hemoproteins. The heme is located at the intermonomer interface and is bound by both monomers. The heme iron is coordinated by the side chain of His245 and an azide molecule when it is present in crystallization conditions. Experiments show that Arg166, which is involved in azide binding, is essential for HugZ enzymatic activity, whereas His245, surprisingly, is not, implying that HugZ has an enzymatic mechanism distinct from other HOs. The placement of the azide corroborates the observed γ-meso specificity for the heme degradation reaction, in contrast to most known HOs that have α-meso specificity. We demonstrate through sequence and structural comparisons that HugZ belongs to a new heme-binding protein family with a split-barrel fold. Members of this family are widespread in pathogenic bacteria and may play important roles in the iron acquisition of these bacteria.  相似文献   

17.

Background

HutZ is the sole heme storage protein identified in the pathogenic bacterium Vibrio cholerae and is required for optimal heme utilization. However, no heme oxygenase activity has been observed with this protein. Thus far, HutZ??s structure and heme-binding mechanism are unknown.

Results

We report the first crystal structure of HutZ in a homodimer determined at 2.0 ? resolution. The HutZ structure adopted a typical split-barrel fold. Through a docking study and site-directed mutagenesis, a heme-binding model for the HutZ dimer is proposed. Very interestingly, structural superimposition of HutZ and its homologous protein HugZ, a heme oxygenase from Helicobacter pylori, exhibited a structural mismatch of one amino acid residue in ??6 of HutZ, although residues involved in this region are highly conserved in both proteins. Derived homologous models of different single point variants with model evaluations suggested that Pro140 of HutZ, corresponding to Phe215 of HugZ, might have been the main contributor to the structural mismatch. This mismatch initiates more divergent structural characteristics towards their C-terminal regions, which are essential features for the heme-binding of HugZ as a heme oxygenase.

Conclusions

HutZ??s deficiency in heme oxygenase activity might derive from its residue shift relative to the heme oxygenase HugZ. This residue shift also emphasized a limitation of the traditional template selection criterion for homology modeling.  相似文献   

18.
Neudesin is a secreted protein with neurotrophic activity in neurons and undifferentiated neural cells. We report here that neudesin is an extracellular heme-binding protein and that its neurotrophic activity is dependent on the binding of heme to its cytochrome b(5)-like heme/steroid-binding domain. At first, we found that at least a portion of the purified recombinant neudesin appeared to bind hemin because the purified neudesin solution was tinged with green and had a sharp absorbance peak at 402 nm. The addition of exogenous hemin extensively increased the amount of hemin-bound neudesin. In contrast, neudesinDeltaHBD, a mutant lacking the heme-binding domain, could not bind hemin. The neurotrophic activity of the recombinant neudesin that bound exogenous hemin (neudesin-hemin) was significantly greater than that of the recombinant neudesin in either primary cultured neurons or Neuro2a cells, suggesting that the activity of neudesin depends on hemin. The neurotrophic activity of neudesin was enhanced by the binding of Fe(III)-protoporphyrin IX, but neither Fe(II)-protoporphyrin IX nor protoporphyrin IX alone. The inhibition of endogenous neudesin by RNA interference significantly decreased cell survival in Neuro2a cells. This indicates that endogenous neudesin possibly contains hemin. The experiment with anti-neudesin antibody suggested that the endogenous neudesin detected in the culture medium of Neuro2a cells was associated with hemin because it was not retained on a heme-affinity column at all. Neudesin is the first extracellular heme-binding protein that shows signal transducing activity by itself. The present findings may shed new light on the function of extracellular heme-binding proteins.  相似文献   

19.
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.  相似文献   

20.
Blood-feeding parasites have developed biochemical mechanisms to control heme intake and detoxification. Here we show that a major antigen secreted by Fasciola hepatica, previously reported as MF6p, of unknown function (gb|CCA61804.1), and as FhHDM-1, considered to be a helminth defense molecule belonging to the family of cathelicidin-like proteins (gb|ADZ24001.1), is in fact a heme-binding protein. The heme-binding nature of the MF6p/FhHDM-1 protein was revealed in two independent experiments: (i) immunopurification of the secreted protein·heme complexes with mAb MF6 and subsequent analysis by C8 reversed-phase HPLC and MS/MS spectrometry and (ii) analysis of the binding ability of the synthetic protein to hemin in vitro. By immunohistochemistry analysis, we have observed that MF6p/FhHDM-1 is produced by parenchymal cells and transported to other tissues (e.g. vitellaria and testis). Interestingly, MF6p/FhHDM-1 is absent both in the intestinal cells and in the lumen of cecum, but it can be released through the tegumental surface to the external medium, where it binds to free heme molecules regurgitated by the parasite after hemoglobin digestion. Proteins that are close analogs of the Fasciola MF6p/FhHDM-1 are present in other trematodes, including Clonorchis, Opistorchis, Paragonimus, Schistosoma, and Dicrocoelium. Using UV-visible spectroscopy and immunoprecipitation techniques, we observed that synthetic MF6p/FhHDM-1 binds to hemin with 1:1 stoichiometry and an apparent Kd of 1.14 × 10−6 m−1. We also demonstrated that formation of synthetic MF6p/FhHDM-1·hemin complexes inhibited hemin degradation by hydrogen peroxide and hemin peroxidase-like activity in vitro. Our results suggest that MF6p/FhHDM-1 may be involved in heme homeostasis in trematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号