首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained ‘real’ structures are compared to ‘model’ structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM’s linker and the holo-CaM’s N- and C-lobe. Before the comparison, the ‘real’ and ‘model’ structures were clustered and cluster–cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.  相似文献   

2.
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites.  相似文献   

3.
Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin’s role in stabilizing interactions between CyaA-ACD and N-CaM.  相似文献   

4.
FT Senguen  Z Grabarek 《Biochemistry》2012,51(31):6182-6194
Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand β-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.  相似文献   

5.
Chen B  Mayer MU  Squier TC 《Biochemistry》2005,44(12):4737-4747
Stabilization of the plasma membrane Ca-ATPase (PMCA) in an inactive conformation upon oxidation of multiple methionines in the calcium regulatory protein calmodulin (CaM) is part of an adaptive cellular response to minimize ATP utilization and the generation of reactive oxygen species (ROS) under conditions of oxidative stress. To differentiate oxidant-induced structural changes that selectively modify the amino-terminal domain of CaM from those that modulate the conformational coupling between the opposing domains, we have engineered a tetracysteine binding motif within helix A in the amino-terminal domain of calmodulin (CaM) that permits the selective and rigid attachment of the conformationally sensitive fluorescent probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein-(1,2-ethanedithiol)(2) (FlAsH-EDT(2)). The position of the FlAsH label in the amino-terminal domain provides a signal for monitoring its binding to the CaM-binding sequence of the PMCA. Following methionine oxidation, there is an enhanced binding affinity between the amino-terminal domain and the CaM-binding sequence of the PMCA. To identify oxidant-induced structural changes, we used frequency domain fluorescence anisotropy measurements to assess the structural coupling between helix A and the amino- and carboxyl-terminal domains of CaM. Helix A undergoes large amplitude motions in apo-CaM; following calcium activation, helix A is immobilized as part of a conformational switch that couples the opposing domains of CaM to stabilize the high-affinity binding cleft associated with target protein binding. Methionine oxidation disrupts the structural coupling between opposing globular domains of CaM, without affecting the calcium-dependent immobilization of helix A associated with activation of the amino-terminal domain to promote high-affinity binding to target proteins. We suggest that this selective disruption of the structural linkage between the opposing globular domains of CaM relieves steric constraints associated with high-affinity target binding, permitting the formation of new contact interactions between the amino-terminal domain and the CaM-binding sequence that stabilizes the PMCA in an inhibited conformation.  相似文献   

6.
Kumar S  Padhan N  Alam N  Gourinath S 《Proteins》2007,68(4):990-998
Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Several EF-hand containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though these proteins have very high sequence similarity, they bind to different target proteins in a Ca2+ dependent manner, leading to different functional pathways (Yadava et al., Mol Biochem Parasito 1997;84:69-82; Chakrabarty et al., J Biol Chem 2004;279:12898-12908) The crystal structure of the Entamoeba histolytica calcium binding protein-1 (EhCaBP1) has been determined at 2.4 A resolution. The crystals were grown using MPD as precipitant and they belong to P6(3) space group with unit cell parameters of a = 95.25 A, b = 95.25 A, c = 64.99 A. Only two out of the four expected EF hand motifs could be modeled into the electron density map and the final model refined to R factor of 25.6% and Free_R of 28%. Unlike CaM, the first two EF hand motifs in EhCaBP1 are connected by a long helix and form a dumbbell shaped structure. Owing to domain swapping oligomerization three EhCaBP1 molecules interact in a head to tail manner to form a triangular trimer. This arrangement allows the EF-hand motif of one molecule to interact with that of an adjacent molecule to form a two EF-hand domain similar to that seen in the N-terminal domain of the NMR structure of CaBP1, calmodulin and troponin C. The oligomeric state of EhCaBP1 results in reduced flexibility between domains and may be responsible for the more limited set of targets recognized by EhCaBP1.  相似文献   

7.
The S100 proteins comprise 25 calcium-signalling members of the EF-hand protein family. Unlike typical EF-hand signalling proteins such as calmodulin and troponin-C, the S100 proteins are dimeric, forming both homo- and heterodimers in vivo. One member of this family, S100B, is a homodimeric protein shown to control the assembly of several cytoskeletal proteins and regulate phosphorylation events in a calcium-sensitive manner. Calcium binding to S100B causes a conformational change involving movement of helix III in the second calcium-binding site (EF2) that exposes a hydrophobic surface enabling interactions with other proteins such as tubulin and Ndr kinase. In several S100 proteins, calcium binding also stabilizes dimerization compared to the calcium-free states. In this work, we have examined the guanidine hydrochloride (GuHCl)-induced unfolding of dimeric calcium-free S100B. A series of tryptophan substitutions near the dimer interface and the EF2 calcium-binding site were studied by fluorescence spectroscopy and showed biphasic unfolding curves. The presence of a plateau near 1.5 M GuHCl showed the presence of an intermediate that had a greater exposed hydrophobic surface area compared to the native dimer based on increased 4,4-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid fluorescence. Furthermore, 1H-15N heteronuclear single quantum coherence analyses as a function of GuHCl showed significant chemical shift changes in regions near the EF1 calcium-binding loop and between the linker and C-terminus of helix IV. Together these observations show that calcium-free S100B unfolds via a dimeric intermediate.  相似文献   

8.
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the “open” conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.  相似文献   

9.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

10.
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1–14 and 1–10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM’s central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly α-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.  相似文献   

11.
The thermodynamics of the interaction between Ca(2+) and calmodulin (CaM) was examined using isothermal titration calorimetry (ITC). The chemical denaturation of calmodulin was monitored spectroscopically to determine the stability of Ca(2+)-free (apo) and Ca(2+)-loaded (holo) CaMs. We explored the conformational and structural dynamics of CaM using amide hydrogen-deuterium (H-D) exchange coupled with Fourier transform infrared (FT-IR) spectroscopy. The results of H-D exchange and FT-IR suggest that CaM activation by Ca(2+) binding involves significant conformational changes. The results have also revealed that while the overall conformation of holo-CaM is more stable than that of the apo-CaM, some part of its α-helix structures, most likely the EF-hand domain region, has more solvent exposure, thus, has a faster H-D exchange rate than that of the apo-CaM. The ITC method provides a new strategy for obtaining site-specific Ca(2+) binding properties and a better estimation of the cooperativity and conformational change contributions of coupled EF-hand proteins.  相似文献   

12.
Calmodulin (CaM) is the primary calcium sensor in eukaryotes. Calcium binds cooperatively to pairs of EF-hand motifs in each domain (N and C). This allows CaM to regulate cellular processes via calcium-dependent interactions with a variety of proteins, including ion channels. One neuronal target is NaV1.2, voltage-dependent sodium channel type II, to which CaM binds via an IQ motif within the NaV1.2 C-terminal tail (residues 1901-1938) [Mori, M., et al. (2000) Biochemistry 39, 1316-1323]. Here we report on the use of circular dichroism, fluorescein emission, and fluorescence anisotropy to study the interaction between CaM and NaV1.2 at varying calcium concentrations. At 1 mM MgCl2, both full-length CaM (CaM1-148) and a C-domain fragment (CaM76-148) exhibit tight (nanomolar) calcium-independent binding to the NaV1.2 IQ motif, whereas an N-domain fragment of CaM (CaM1-80) binds weakly, regardless of calcium concentration. Equilibrium calcium titrations of CaM at several concentrations of the NaV1.2 IQ peptide showed that the peptide reduced the calcium affinity of the CaM C-domain sites (III and IV) without affecting the N-domain sites (I and II) significantly. This leads us to propose that the CaM C-domain mediates constitutive binding to the NaV1.2 peptide, but that interaction then distorts calcium-binding sites III and IV, thereby reducing their affinity for calcium. This contrasts with the CaM-binding domains of voltage-dependent Ca2+ channels, kinases, and phosphatases, which increase the calcium binding affinity of the C-domain of CaM.  相似文献   

13.
Calsensin is an EF-hand calcium-binding protein expressed by a subset of peripheral sensory neurons that fasciculate into a single tract in the leech central nervous system. Calsensin is a 9-kD protein with two EF-hand calcium-binding motifs. Using multidimensional NMR spectroscopy we have determined the solution structure and backbone dynamics of calcium-bound Calsensin. Calsensin consists of four helices forming a unicornate-type four-helix bundle. The residues in the third helix undergo slow conformational exchange indicating that the motion of this helix is associated with calciumbinding. The backbone dynamics of the protein as measured by (15)N relaxation rates and heteronuclear NOEs correlate well with the three-dimensional structure. Furthermore, comparison of the structure of Calsensin with other members of the EF-hand calcium-binding protein family provides insight into plausible mechanisms of calcium and target protein binding.  相似文献   

14.
Androcam is a testis-specific protein of Drosophila melanogaster, with 67% sequence identity to calmodulin and four potential EF-hand calcium-binding sites. Spectroscopic monitoring of the thermal unfolding of recombinant calcium-free androcam shows a biphasic process characteristic of a two-domain protein, with the apo-N-domain less stable than the apo-C-domain. The two EF hands of the C-domain of androcam bind calcium cooperatively with 40-fold higher average affinity than the corresponding calmodulin sites. Magnesium competes with calcium binding [Ka(Mg) approximately 3 x 10(3) M(-1)]. Weak calcium binding is also detected at one or more N-domain sites. Compared to apo-calmodulin, apo-androcam has a smaller conformational response to calcium and a lower alpha-helical content over a range of experimental conditions. Unlike calmodulin, a tryptic cleavage site in the N-domain of apo-androcam remains trypsin sensitive in the presence of calcium, suggesting an altered calcium-dependent conformational change in this domain. The affinity of model target peptides for androcam is 10(3)-10(5) times lower than for calmodulin, and interaction of the N-domain of androcam with these peptides is significantly reduced. Thus, androcam shows calcium-induced conformational responses typical of a calcium sensor, but its properties indicate calcium sensitivity and target interactions significantly different from those of calmodulin. From the sequence differences and the altered calcium-binding properties it is likely that androcam differs from calmodulin in the conformation of residues in the second calcium-binding loop. Molecular modeling supports the deduction that there are significant conformational differences in the N-domain of androcam compared to calmodulin, and that these could affect the surface, conferring a different specificity on androcam in target interactions related to testis-specific calcium signaling functions.  相似文献   

15.
16.
Sorcin is a 22 kD calcium-binding protein that is found in a wide variety of cell types, such as heart, muscle, brain and adrenal medulla. It belongs to the penta-EF-hand (PEF) protein family, which contains five EF-hand motifs that associate with membranes in a calcium-dependent manner. Prototypic members of this family are the calcium-binding domains of calpain, such as calpain dVI. Full-length human sorcin has been crystallized in the absence of calcium and the structure determined at 2.2 A resolution. Apart from an extended N-terminal portion, the sorcin molecule has a globular shape. The C-terminal domain is predominantly alpha-helical, containing eight alpha-helices and connecting loops incorporating five EF hands. Sorcin forms dimers through the association of the unpaired EF5, confirming this as the mode of association in the dimerization of PEF proteins. Comparison with calpain dVI reveals that the general folds of the individual EF-hand motifs are conserved, especially that of EF1, the novel EF-hand motif characteristic of the family. Detailed structural comparisons of sorcin with other members of PEF indicate that the EF-hand pair EF1-EF2 is likely to correspond to the two physiologically relevant calcium-binding sites and that the calcium-induced conformational change may be modest and localized within this pair of EF-hands. Overall, the results derived from the structural observations support the view that, in sorcin, calcium signaling takes place through the first pair of EF-hands.  相似文献   

17.
果蝇的视觉信号转导途径是已知的最快的G 蛋白偶联信号通路。这其中涉及到TRP/TRPL通道的开放以及钙离子的内流等一系列反应的形成。NINAC(neither inactivation nor afterpotential C)是一种特异性存在于果蝇感光细胞中的第3类肌球蛋白(Myosin III),其在终止果蝇的视觉信号转导通路中起着非常重要的作用。NINAC蛋白具有两种亚型:一种是132 kD的蛋白亚型 (p132),另一种则是174 kD的蛋白亚型(p174)。这两种不同的蛋白亚型都具有相同的激酶催化结构域(kinase domain),以及与肌球蛋白相似的马达结构域(motor domain)。但是,它们在C末端却存在着非常大的差异,这其中包括了钙调蛋白结合基序(IQ motif)。NINAC的这两种蛋白亚型在果蝇的感光细胞中的定位以及作用有很大不同,尤其是在与钙调蛋白的相互作用方面。钙调蛋白结合基序与钙调蛋白(CaM)之间的相互作用对于果蝇的视觉信号通路具有重要的意义:NINAC结合钙调蛋白能力的缺失将导致果蝇的视觉传导缺陷。本文通过蛋白共表达的方法,成功表达并纯化得到了不同版本的NINAC与钙调蛋白的蛋白复合物。静态光散射的结果表明,在Ca2+存在情况下,p174蛋白可以结合2个Ca2+-CaM,而p132只结合1个Ca2+-CaM。通过分析型凝胶过滤以及等温量热滴定技术,进一步鉴定了p174及p132的IQ2(第2个钙调蛋白结合基序)序列与Ca2+ CaM的相互作用。通过序列分析及进一步的突变实验发现,p174 IQ2中的3个疏水氨基酸(F1083,F1086 和 L1092)对于钙调蛋白的结合非常重要,并导致了p174与p132蛋白和Ca2+ CaM结合能力的差异。本文的研究提供了NINAC与Ca2+-CaM相互作用的生化机制,将为进一步在果蝇视觉信号通路中深入研究CaM是如何调节NINAC的体内功能实验打下基础。  相似文献   

18.
We show here that in a yeast two-hybrid assay calmodulin (CaM) interacts with the intracellular C-terminal region of several members of the KCNQ family of potassium channels. CaM co-immunoprecipitates with KCNQ2, KCNQ3, or KCNQ5 subunits better in the absence than in the presence of Ca2+. Moreover, in two-hybrid assays where it is possible to detect interactions with apo-CaM but not with Ca2+-bound calmodulin, we localized the CaM-binding site to a region that is predicted to contain two alpha-helices (A and B). These two helices encompass approximately 85 amino acids, and in KCNQ2 they are separated by a dispensable stretch of approximately 130 amino acids. Within this CaM-binding domain, we found an IQ-like CaM-binding motif in helix A and two overlapping consensus 1-5-10 CaM-binding motifs in helix B. Point mutations in helix A or B were capable of abolishing CaM binding in the two-hybrid assay. Moreover, glutathione S-transferase fusion proteins containing helices A and B were capable of binding to CaM, indicating that the interaction with KCNQ channels is direct. Full-length CaM (both N and C lobes) and a functional EF-1 hand were required for these interactions to occur. These observations suggest that apo-CaM is bound to neuronal KCNQ channels at low resting Ca2+ levels and that this interaction is disturbed when the [Ca2+] is raised. Thus, we propose that CaM acts as a mediator in the Ca2+-dependent modulation of KCNQ channels.  相似文献   

19.
Calmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly ( approximately 200 pm affinity). This interaction activates the adenylyl cyclase activity of CyaA, leading to a rise in intracellular cAMP levels to disrupt normal cellular signaling. We recently solved the structure of CyaA-ACD in complex with C-CaM to elucidate the mechanism of catalytic activation. However, the structure of the interface between N-CaM and CyaA, the formation of which contributes a 400-fold increase of binding affinity between CyaA and CaM, remains elusive. Here, we used site-directed mutations and molecular dynamic simulations to generate several working models of CaM-bound CyaA-ACD. The validity of these models was evaluated by disulfide bond cross-linking, point mutations, and fluorescence resonance energy transfer experiments. Our study reveals that a beta-hairpin region (amino acids 259-273) of CyaA-ACD likely makes contacts with the second calcium binding motif of the extended CaM. This mode of interaction differs from the interaction of N-CaM with anthrax edema factor, which binds N-CaM via its helical domain. Thus, two structurally conserved, bacterial adenylyl cyclase toxins have evolved to utilize distinct binding surfaces and modes of activation in their interaction with CaM, a highly conserved eukaryotic signaling protein.  相似文献   

20.
CaVP is a calcium-binding protein from amphioxus. It has a modular composition with two domains, but only the two EF-hand motifs localized in the C-terminal domain are functional. We recently determined the solution structure of this regulatory half (C-CaVP) in the Ca(2+)-saturated form and characterized the stepwise ion binding. This paper reports the (15)N nuclear relaxation rates of the Ca(2+)-saturated C-CaVP, measured at four different NMR fields (9.39, 11.74, 14.1, and 18.7 T), which were used to map the spectral density function for the majority of the amide H(N)-N vectors. Fitting the spectral density values at eight frequencies by a model-free approach, we obtained the microdynamic parameters characterizing the global and internal movements of the polypeptide backbone. The two EF-hand motifs, including the ion binding loops, behave like compact structural units with restricted mobility as reflected in the quite uniform order parameter and short internal correlation time (< 20 nsec). Comparative analysis of the two Ca(2+) binding sites shows that site III, having a larger affinity for the metal ion, is generally more rigid, and the amide vector in the second residue of each loop is significantly less restricted. The linker fragment is animated simultaneously by a larger amplitude fast motion and a slow conformational exchange on a microsecond to millisecond time scale. The backbone dynamics of C-CaVP characterized here is discussed in relation with other well-characterized Ca(2+)-binding proteins. Supplemental material: See www.proteinscience.org  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号