首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity.  相似文献   

2.
Sequenced genomes of dissimilatory sulfur-oxidizing and sulfate-reducing bacteria containing genes coding for DsrAB, the enzyme dissimilatory sulfite reductase, inevitably also contain the gene coding for the 12-kDa DsrC protein. DsrC is thought to have a yet unidentified role associated with the activity of DsrAB. Here we report the solution structure of DsrC from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum determined with NMR spectroscopy in reducing conditions, and we describe the redox behavior of two conserved cysteine residues upon transfer to an oxidizing environment. In reducing conditions, the DsrC structure is disordered in the highly conserved carboxy-terminus. We present multiple lines of evidence that, in oxidizing conditions, a strictly conserved cysteine (Cys111) at the penultimate position in the sequence forms an intramolecular disulfide bond with Cys100, which is conserved in DsrC in all organisms with DsrAB. While an intermolecular Cys111-Cys111 disulfide-bonded dimer is rapidly formed under oxidizing conditions, the intramolecularly disulfide-bonded species (Cys100-Cys111) is the thermodynamically stable form of the protein under these conditions. Treatment of the disulfidic forms with reducing agent regenerates the monomeric species that was structurally characterized. Using a band-shift technique under nondenaturing conditions, we obtained evidence for the interaction of DsrC with heterohexameric DsrEFH, a protein encoded in the same operon. Mutation of Cys100 to serine prevented formation of the DsrC species assigned as an intramolecular disulfide in oxidizing conditions, while still allowing formation of the intermolecular Cys111-Cys111 dimer. In the reduced form, this mutant protein still interacted with DsrEFH. This was not the case for the Cys111Ser and Cys100Ser/Cys111Ser mutants, both of which also did not form protein dimers. Our observations highlight the central importance of the carboxy-terminal DsrC cysteine residues and are consistent with a role as a sulfur-substrate binding/transferring protein, as well as with an electron-transfer function via thiol-disulfide interchanges.  相似文献   

3.
Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.  相似文献   

4.
Peroxiredoxin 5 (PRDX5) belongs to the PRDX superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides and peroxynitrite. PRDX5 is classified in the atypical 2-Cys subfamily of PRDXs. In this subfamily, the oxidized form of the enzyme is characterized by the presence of an intramolecular disulfide bridge between the peroxidatic and the resolving cysteine residues. We report here three crystal forms in which this intramolecular disulfide bond is indeed observed. The structures are characterized by the expected local unfolding of the peroxidatic loop, but also by the unfolding of the resolving loop. A new type of interface between PRDX molecules is described. The three crystal forms were not oxidized in the same way and the influence of the oxidizing conditions is discussed.  相似文献   

5.
Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.  相似文献   

6.
Chloride intracellular channels (CLICs) are putative pore-forming glutathione-S-transferase homologs that are thought to insert into cell membranes directly from the cytosol. We incorporated soluble, recombinant human CLIC1 into planar lipid bilayers to investigate the associated ion channels, and noted that channel assembly (unlike membrane insertion) required a specific lipid mixture. The channels formed by reduced CLIC1 were similar to those previously recorded from cells and "tip-dip" bilayers, and specific anti-CLIC1 antibodies inhibited them. However, the amplitudes of the filtered single-channel currents were strictly regulated by the redox potential on the "extracellular" (or "luminal") side of the membrane, with minimal currents under strongly oxidizing conditions. We carried out covalent functional modification and site-directed mutagenesis of this controversial ion channel to test the idea that cysteine 24 is a critical redox-sensitive residue located on the extracellular (or luminal) side of membrane CLIC1 subunits, in a cysteine-proline motif close to the putative channel pore. Our findings support a simple structural hypothesis to explain how CLIC1 oligomers form pores in membranes, and suggest that native channels may be regulated by a novel mechanism involving the formation and reduction of intersubunit disulphide bonds.  相似文献   

7.
In plants, the first committed enzyme for glutathione biosynthesis, γ-glutamylcysteine ligase (GCL), is under multiple controls. The recent elucidation of GCL structure from Brassica juncea (BjGCL) has revealed the presence of two intramolecular disulfide bridges (CC1, CC2), which both strongly impact on GCL activity in vitro . Here we demonstrate that cysteines of CC1 are confined to plant species from the Rosids clade, and are absent in other plant families. Conversely, cysteines of CC2 involved in the monomer–dimer transition in BjGCL are not only conserved in the plant kingdom, but are also conserved in the evolutionarily related α- (and some γ-) proteobacterial GCLs. Focusing on the role of CC2 for GCL redox regulation, we have extended our analysis to all available plant (31; including moss and algal) and related proteobacterial GCL (46) protein sequences. Amino acids contributing to the homodimer interface in BjGCL are highly conserved among plant GCLs, but are not conserved in related proteobacterial GCLs. To probe the significance of this distinction, recombinant GCLs from Nicotiana tabacum (NtGCL), Agrobacterium tumefaciens (AtuGCL, α-proteobacteria) and Xanthomonas campestris (XcaGCL, γ-proteobacteria) were analyzed for their redox response. As expected, NtGCL forms a homodimer under oxidizing conditions, and is activated more than threefold. Conversely, proteobacterial GCLs remain monomeric under oxidizing and reducing conditions, and their activities are not inhibited by DTT, despite the presence of CC2. We conclude that although plant GCLs are evolutionarily related to proteobacterial GCLs, redox regulation of their GCLs via CC2-dependent dimerization has been acquired later in evolution, possibly as a consequence of compartmentation in the redox-modulated plastid environment.  相似文献   

8.
Over 130 mutations to copper, zinc superoxide dismutase (SOD) are implicated in the selective death of motor neurons found in 25% of patients with familial amyotrophic lateral sclerosis (ALS). Despite their widespread distribution, ALS mutations appear positioned to cause structural and misfolding defects. Such defects decrease SOD's affinity for zinc, and loss of zinc from SOD is sufficient to induce apoptosis in motor neurons in vitro. To examine the importance of the zinc site in the structure and pathogenesis of human SOD, we determined the 2.0-A-resolution crystal structure of a designed zinc-deficient human SOD, in which two zinc-binding ligands have been mutated to hydrogen-bonding serine residues. This structure revealed a 9 degrees twist of the subunits, which opens the SOD dimer interface and represents the largest intersubunit rotational shift observed for a human SOD variant. Furthermore, the electrostatic loop and zinc-binding subloop were partly disordered, the catalytically important Arg143 was rotated away from the active site, and the normally rigid intramolecular Cys57-Cys146 disulfide bridge assumed two conformations. Together, these changes allow small molecules greater access to the catalytic copper, consistent with the observed increased redox activity of zinc-deficient SOD. Moreover, the dimer interface is weakened and the Cys57-Cys146 disulfide is more labile, as demonstrated by the increased aggregation of zinc-deficient SOD in the presence of a thiol reductant. However, equimolar Cu,Zn SOD rapidly forms heterodimers with zinc-deficient SOD (t1/2 approximately 15 min) and prevents aggregation. The stabilization of zinc-deficient SOD as a heterodimer with Cu,Zn SOD may contribute to the dominant inheritance of ALS mutations. These results have general implications for the importance of framework stability on normal metalloenzyme function and specific implications for the role of zinc ion in the fatal neuropathology associated with SOD mutations.  相似文献   

9.
The crystal structure of a wild type of the human soluble chloride intracellular ion channel CLIC4 (wCLIC4) has been determined at a resolution of 2.2A. The structure shows a homotrimer in an asymmetric unit, which is first observed in CLICs. The assembly of the trimer takes a unique triple interaction mode between three monomers with a hydrogen-bond network and hydrophobic contacts. Through such complicated interactions, the homotrimer of wCLIC4 is firmly stabilized. The structure shows an oligomeric mode with a unique assembly mechanism by which the oligomerization of CLIC4 can be performed without any intramolecular disulfide bond formation. It indicated a possibility that CLIC4 may take a unique structural organization distinct from CLIC1 for docking with lipid bilayers. In addition, the structure shows distinct conformational states of the h2 region for respective monomers of the trimer, which reveal an intrinsic conformational susceptibility for this significant region in the structural transition.  相似文献   

10.
Chloride intracellular channel proteins (CLICs) are distinct from most ion channels in that they have both soluble and integral membrane forms. CLICs are highly conserved in chordates, with six vertebrate paralogues. CLIC-like proteins are found in other metazoans. CLICs form channels in artificial bilayers in a process favoured by oxidising conditions and low pH. They are structurally plastic, with CLIC1 adopting two distinct soluble conformations. Phylogenetic and structural data indicate that CLICs are likely to have enzymatic function. The physiological role of CLICs appears to be maintenance of intracellular membranes, which is associated with tubulogenesis but may involve other substructures.  相似文献   

11.
The 5-HT4 receptor (5-HT4R) belongs to the G-protein-coupled receptor (GPCR) family and is of considerable interest for the development of new drugs to treat gastrointestinal diseases and memory disorders. The 5-HT4R exists as a constitutive dimer but its molecular determinants are still unknown. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer (BRET) techniques, we show here that 5-HT4R homodimerization but not 5-HT4R-β2 adrenergic receptor (β2AR) heterodimerization is largely decreased under reducing conditions suggesting the participation of disulfide bonds in 5-HT4R dimerization. Molecular modeling and protein docking experiments identified four cysteine (Cys) residues potentially involved in the dimer interface through intramolecular or intermolecular disulfide bonds. We show that disulfide bridges between Cys112 and Cys145 located within TM3 and TM4, respectively, are of critical importance for 5-HT4R dimer formation. Our data suggest that two disulfide bridges between two transmembrane Cys residues are involved in the dimerization interface of a GPCR.  相似文献   

12.
Depending on the redox-status, the serpin plasminogen activator inhibitor type 2 (PAI-2) can exist in either a stable monomeric or polymerogenic form. The latter form, which spontaneously forms loop-sheet polymers, has an open beta-sheet A and is stabilized by a disulfide bond between C79 (in the CD-loop) and C161 (at the bottom of PAI-2). Reduction of this bond results in a closing of the beta-sheet A and converts PAI-2 to a stable monomeric form. Here we show that the stable monomeric and polymerogenic forms of PAI-2 are fully interconvertible, depending on redox-status of the environment. Our intramolecular distance measurements indicate that the CD-loop folds mainly on one side of the stable monomeric form of the inhibitor. However, the loop can translocate about 54A to the bottom of PAI-2 so that the C79-C161 disulfide bond can form under oxidizing conditions. We show also that the redox-active C79 can form a disulfide-link to the matrix protein vitronectin, suggesting that vitronectin can stabilize active PAI-2 in extracellular compartments. PAI-2 is therefore a rare example of a redox-sensitive protein for which the activity and polymerization ability are regulated by reversible disulfide bond formation leading to major translocation of a loop and significant conformational changes in the molecule.  相似文献   

13.
Despite being synthesized in the cytosol without a leader sequence, the soluble 253-residue mammalian protein CLIC4 (Chloride Intracellular Channel 4, or p64H1), a structural homologue of Omega-type glutathione-S-transferase, autoinserts into membranes to form an integral membrane protein with ion channel activity. A predicted transmembrane domain (TMD) near the N-terminus of CLIC4 could mediate membrane insertion, and contribute to oligomeric pores, with minimal reorganization of the soluble protein structure. We tested this idea by reconstituting recombinant CLIC4 in planar bilayers containing phosphatidyethanolamine, phosphatidylserine and cholesterol, recording ion channels with a maximum conductance of approximately 15 pS in KCl under both oxidizing and reducing conditions. The channels discriminated poorly between anions and cations, incompatible with the current "CLIC" nomenclature, and their conductance was modified by the trans (external or luminal) redox potential, as previously observed for CLIC1. We then reconstituted a truncated version of the protein, limited to the first 61 residues containing the predicted TMD. This included a single trans cysteine residue in the putative pore-forming subunits, at the external entrance to the pore. The truncated protein formed non-selective channels with a reduced conductance, but they retained their trans-redox sensitivity, and could still be blocked or inactivated by trans (not cis) thiol-reative dithiobisnitrobenzoic acid. We suggest that oligomers containing the putative TMD are essential components of the CLIC4 pore. However, the pore is inherently non-selective, and any ionic selectivity in CLIC4 (and other membrane CLICs) may be attributable to other regions of the protein, including the channel vestibules.  相似文献   

14.
Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water-soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S-transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels.  相似文献   

15.
The effects of sulfhydryl reduction/oxidation on the gating of large-conductance, Ca2+-activated K+ (maxi-K) channels were examined in excised patches from tracheal myocytes. Channel activity was modified by sulfhydryl redox agents applied to the cytosolic surface, but not the extracellular surface, of membrane patches. Sulfhydryl reducing agents dithiothreitol, β-mercaptoethanol, and GSH augmented, whereas sulfhydryl oxidizing agents diamide, thimerosal, and 2,2′-dithiodipyridine inhibited, channel activity in a concentration-dependent manner. Channel stimulation by reduction and inhibition by oxidation persisted following washout of the compounds, but the effects of reduction were reversed by subsequent oxidation, and vice versa. The thiol-specific reagents N-ethylmaleimide and (2-aminoethyl)methanethiosulfonate inhibited channel activity and prevented the effect of subsequent sulfhydryl oxidation. Measurements of macroscopic currents in inside-out patches indicate that reduction only shifted the voltage/nPo relationship without an effect on the maximum conductance of the patch, suggesting that the increase in nPo following reduction did not result from recruitment of more functional channels but rather from changes of channel gating. We conclude that redox modulation of cysteine thiol groups, which probably involves thiol/disulfide exchange, alters maxi-K channel gating, and that this modulation likely affects channel activity under physiological conditions.  相似文献   

16.
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 A and 2.40 A resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal alpha-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant.  相似文献   

17.
Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5 Å at a home X-ray source by treating the protein with 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys114, and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general.  相似文献   

18.
It has previously been documented that cadmium displays high affinity for protein thiol groups and induces an impairment of glucocorticoid receptor (GR) cellular functions. The present study examined the possibility that cadmium exerts these effects on GR activity by disturbing the receptor's redox equillibrium. To that end, the influence of cadmium on the rat liver GR potential to form intramolecular and intermolecular disulfide bonds under nonreducing conditions and under oxidizing conditions produced by the addition of hydrogen peroxide (H2O2) to the cytosol was examined by nonreducing SDS-PAGE and immunoblotting. The results show that cadmium inhibits formation of disulfide bonds within the GR both in the absence and in the presence of H2O2. The creation of intermolecular disulfide linkages between the apo-GR and associated heat shock proteins Hsp90 and Hsp70, which was evident in the presence of H2O2, was also significantly impaired after cadmium administration. These observations are consistent with the assumption that cadmium affects the redox state of the receptor, possibly by binding to its sulfhydryl groups. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The binding of ryanodine to a high affinity site on the sarcoplasmic reticulum Ca2+-release channel results in a dramatic alteration in both gating and ion handling; the channel enters a high open probability, reduced-conductance state. Once bound, ryanodine does not dissociate from its site within the time frame of a single channel experiment. In this report, we describe the interactions of a synthetic ryanoid, 21-amino-9α-hydroxy-ryanodine, with the high affinity ryanodine binding site on the sheep cardiac sarcoplasmic reticulum Ca2+-release channel. The interaction of 21-amino-9α-hydroxy-ryanodine with the channel induces the occurrence of a characteristic high open probability, reduced-conductance state; however, in contrast to ryanodine, the interaction of this ryanoid with the channel is reversible under steady state conditions, with dwell times in the modified state lasting seconds. By monitoring the reversible interaction of this ryanoid with single channels under voltage clamp conditions, we have established a number of novel features of the ryanoid binding reaction. (a) Modification of channel function occurs when a single molecule of ryanoid binds to the channel protein. (b) The ryanoid has access to its binding site only from the cytosolic side of the channel and the site is available only when the channel is open. (c) The interaction of 21-amino-9α-hydroxy-ryanodine with its binding site is influenced strongly by transmembrane voltage. We suggest that this voltage dependence is derived from a voltage-driven conformational alteration of the channel protein that changes the affinity of the binding site, rather than the translocation of the ryanoid into the voltage drop across the channel.  相似文献   

20.
Chloride intracellular channel (CLIC) proteins are small proteins distantly related to the omega family of glutathione S-transferases (GSTs). CLIC proteins are expressed in a wide variety of tissues in multicellular organisms and are targeted to specific cellular membranes. Members of this family are capable in vitro of changing conformation from a globular, soluble state to a membrane-inserted state in which they provide chloride conductance. The structural basis for in vivo CLIC protein function, however, is not well understood. We have mapped the functional domains of CLIC family members using an in vivo assay for membrane localization and function of CLIC proteins in the nematode Caenorhabditis elegans. A<70 amino acid N-terminal domain is a key determinant of membrane localization and function of invertebrate CLIC proteins. This domain, which we term the 'PTM' domain, named after an amphipathic putative transmembrane helix contained within it, directs distinct C. elegans CLIC homologs to distinct subcellular membranes. We find that within the PTM region, the cysteine residues required for GST-type activity are unnecessary for invertebrate CLIC function, but that specific residues within the proposed transmembrane helix are necessary for correct targeting and protein function. We find that among all tested invertebrate CLIC proteins, function appears to be completely conserved despite striking differences in the charged residues contained within the amphipathic helix. This indicates that these residues do not contribute to anion selectivity as previously suggested. We find that outside the PTM region, the remaining three-quarters of CLIC protein sequence is functionally equivalent not only among vertebrate and invertebrate CLIC proteins, but also among the more distantly related GST-omega and GST-sigma proteins. The PTM region thus provides both targeting information and CLIC functional specificity, possibly adapting GST-type proteins to function as ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号