首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Diphtheria toxin repressor (DtxR) regulates the expression of iron-sensitive genes in Corynebacterium diphtheriae, including the diphtheria toxin gene. DtxR contains an N-terminal metal- and DNA-binding domain that is connected by a proline-rich flexible peptide segment (Pr) to a C-terminal src homology 3 (SH3)-like domain. We determined the solution structure of the intramolecular complex formed between the proline-rich segment and the SH3-like domain by use of NMR spectroscopy. The structure of the intramolecularly bound Pr segment differs from that seen in eukaryotic prolylpeptide-SH3 domain complexes. The prolylpeptide ligand is bound by the SH3-like domain in a deep crevice lined by aliphatic amino acid residues and passes through the binding site twice but does not adopt a polyprolyl type-II helix. NMR studies indicate that this intramolecular complex is present in the apo-state of the repressor. Isothermal equilibrium denaturation studies show that intramolecular complex formation contributes to the stability of the apo-repressor. The binding affinity of synthetic peptides to the SH3-like domain was determined using isothermal titration calorimetry. From the structure and the binding energies, we calculated the enhancement in binding energy for the intramolecular reaction and compared it to the energetics of dimerization. Together, the structural and biophysical studies suggest that the proline-rich peptide segment of DtxR functions as a switch that modulates the activation of repressor activity.  相似文献   

2.
3.
4.
5.
The Bacillus subtilis manganese transport regulator, MntR, binds Mn2+ as an effector and is a repressor of transporters that import manganese. A member of the diphtheria toxin repressor (DtxR) family of metalloregulatory proteins, MntR exhibits selectivity for Mn2+ over Fe2+. Replacement of a metal-binding residue, Asp8, with methionine (D8M) relaxes this specificity. We report here the X-ray crystal structures of wild-type MntR and the D8M mutant bound to manganese with 1.75 A and 1.61 A resolution, respectively. The 142-residue MntR homodimer has substantial structural similarity to the 226-residue DtxR but lacks the C-terminal SH3-like domain of DtxR. The metal-binding pockets of MntR and DtxR are substantially different. The cation-to-cation distance between the two manganese ions bound by MntR is 3.3 A, whereas that between the metal ions bound by DtxR is 9 A. D8M binds only a single Mn2+ per monomer, owing to alteration of the metal-binding site. The sole retained metal site adopts pseudo-hexacoordinate geometry rather than the pseudo-heptacoordinate geometry of the MntR metal sites.  相似文献   

6.
7.
The diphtheria toxin repressor (DtxR) is an Fe2+-activated protein with sequence-specific DNA-binding activity for the diphtheria toxin (tox) operator. Under high-iron conditions in Corynebacterium diphtheriae, DtxR represses toxin and siderophore biosynthesis as well as iron uptake. DtxR and a mutant repressor with His–47 substituted for Arg–47, designated DtxR-R47H, were purified and compared. Six different divalent cations (Cd2+, Co2+, Fe2+, Mn2+, Ni2+, and Zn2+) activated the sequence-specific DNA-binding activity of DtxR and enabled it to protect the fox operator from DNase I digestion, but Cu2+ failed to activate DtxR. Hydroxyl radical footprinting experiments indicated that DtxR binds symmetrically about the dyad axis of the tox operator. Methylation protection experiments demonstrated that DtxR binding alters the susceptibility to methylation of three G residues within the AT-rich tox operator. These findings suggest that two or more monomers of DtxR are involved in binding to the tox operator, with symmetrical DNA-protein interactions occurring at each end of the palindromic operator. In this regard, DtxR resembles several other well-characterized prokaryotic repressor proteins but differs dramatically from the Fe2+-activated ferric uptake repressor protein (Fur) of Escherichia coli. The concentration of Co2+ required to activate DtxR-R47H was at least 10-foid greater than that needed to activate DtxR, but the sequence-specific DNA binding of activated DtxR-R47H was indistinguishable from that of wild-type DtxR. The markedly deficient repressor activity of DtxR-R47H is consistent with a significant decrease in its binding activity for divalent cations.  相似文献   

8.
The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains active in vivo in the presence of 300 micro M 2,2'dipyridyl, the purified repressor is, in fact, dependent upon low levels of transition metal ion to transit from the inactive apo form to the active metal ion-bound form of the repressor. Binding studies using 8-anilino-1-naphthalenesulfonic acid suggest that the E175K mutation stabilizes an intermediate of the molten-globule form of the repressor, increasing exposure of hydrophobic residues to solvent. We demonstrate that the hyperactive DtxR(E175K) phenotype is dependent upon an intact ancillary metal ion-binding site (site 1) of the repressor. These observations support the hypothesis that metal ion binding in the ancillary site facilitates the conversion of the inactive apo-repressor to its active, operator-binding conformation. Furthermore, these results support the hypothesis that the C-terminal src homology 3-like domain of DtxR plays an active role in the modulation of repressor activity.  相似文献   

9.
c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl+ cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.  相似文献   

10.
The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is Ka = 7.6 ± 0.5 × 104, which is very similar to the reported value for the wild-type repressor, Ka = 6.3 × 104. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.  相似文献   

11.
12.
The diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae is a divalent-metal activated repressor of chromosomal genes responsible for siderophore-mediated iron-uptake and of a gene on several corynebacteriophages that encodes diphtheria toxin. Even though DtxR is the best characterized iron-dependent repressor to date, numerous key properties of the protein still remain to be explained. One is the role of the cation-anion pair discovered in its first metal-binding site. A second is the reason why zinc exhibits its activating effect only at a concentration 100-fold higher than other divalent cations. In the presently reported 1.85 A resolution Co-DtxR structure at 100K, the sulfate anion in the cation-anion-binding site interacts with three side chains that are all conserved in the entire DtxR family, which points to a possible physiological role of the anion. A comparison of the 1.85 A Cobalt-DtxR structure at 100K and the 2.4 A Zinc-DtxR structure at room temperature revealed no significant differences. Hence, the difference in efficiency of Co2+ and Zn2+ to activate DtxR remains a mystery and might be hidden in the properties of the intriguing second metal-binding site. Our studies do, however, provide a high resolution view of the cationanion-binding site that has most likely evolved to interact not only with a cation but also with the anion in a very precise manner.  相似文献   

13.
14.
15.
16.
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.  相似文献   

17.
18.
Iron, DtxR, and the regulation of diphtheria toxin expression   总被引:22,自引:1,他引:21  
In recent years considerable advances have been made in the understanding of the molecular basis of iron-mediated regulation of diphtheria toxin expression. The tox gene has been shown to be regulated by the heavy metal ion-activated regulatory element DtxR. In the presence of divalent heavy metal ions, DtxR becomes activated and binds to a 9 bp interrupted palindromic sequence. The consensus-binding site has been determined by both the sequence analysis of DtxR-responsive operators cloned from genomic libraries of Corynebacterium diphtheriae as well as by in vitro genetic methods using cyclic amplification of selected targets (CAST-ing). it is now clear that DtxR functions as a global iron-sensitive regulatory element in the control of gene expression in C. diphtheriae. In addition, the metal ion-activation domain of DtxR is being characterized by both mutational analysis and determination of the X-ray structure at 3.0 Å resolution.  相似文献   

19.
A segment of the exotoxin A gene of Pseudomonas aeruginosa, coding for the N-terminal end of domain I and domain II of the toxin (ETA), was genetically fused to the diphtheria toxin gene of Corynebacterium diphtheriae, coding for the N-terminal end of A fragment of diphtheria toxin (DT). The resulting hybrid protein (termed CED1) was produced in large amounts and exported to the periplasm in Escherichia coli. This chimaeric protein reacted with both anti-ETA and anti-DT antisera. Furthermore, the chimaeric protein displayed ADP-ribosylation activity and exhibited cytotoxicity to mouse 3T6 fibroblasts. These results demonstrated that the chimaeric protein is cytotoxic, and that the toxic potential of DTA can be selectively internalized and translocated via domains I and II of exotoxin A, which are thus sufficient to direct and translocate an enzymatically active heterologous polypeptide segment into the cytosol of sensitive cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号