首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

2.
Sackett K  Shai Y 《Biochemistry》2002,41(14):4678-4685
For many different enveloped viruses the crystal structure of the fusion protein core has been established. A striking conservation in the tertiary and quaternary arrangement of these core structures is repeatedly revealed among members of diverse families. It has been proposed that the primary role of the core involves structural rearrangements which facilitate apposition between viral and target cell membranes. Forming the internal trimeric coiled coil of the core, the N-terminal heptad repeat (NHR) of HIV-1 gp41 was suggested to have additional roles, due to its ability to bind biological membranes. The NHR is adjacent to the N-terminal hydrophobic fusion peptide (FP), which alone can fuse biological membranes. To investigate the role of the NHR in membrane fusion, we synthesized and functionally characterized HIV-1 gp41 peptides corresponding to the FP and NHR alone, as well as continuous peptides made of both FP and NHR (wild type and mutant). We show here that a consecutive, 70-residue peptide consisting of both the FP and NHR (gp41/1-70) has dramatic fusogenic properties. The effect of including the complete NHR, as compared to shorter 23-, 33-, or 52-residue N-terminal peptides, is illustrated by a leap in lipid mixing of phosphatidylcholine (PC) large unilamellar vesicles (LUV) and clearly delineates the synergistic role of the NHR in the fusion event. Furthermore, a mutation in the NHR that renders the virus noninfectious is reflected by a significant reduction in in vitro lipid mixing induced by the mutant, gp41/1-70 (I62D). Additional spectroscopic studies, characterizing membrane binding and apposition induced by the peptides, help to clarify the role of the NHR in membrane fusion.  相似文献   

3.
Synaptosome-associated proteins SNAP-23/25, members of a family of proteins essential for exocytosis, have a highly conserved central cysteine-rich domain that plays an important role in membrane targeting. More than one cysteine in this domain is modified by palmitic acid through a thioester linkage. In an effort to address the biological significance of acylation of this domain, we have generated synthetic peptides corresponding to the cysteine-rich region of SNAP-23 and covalently modified the cysteines with palmitic acid. The interaction of acylated and nonacylated peptides with lipid vesicles and natural membranes has been investigated. Our results indicate that palmitoylation is essential for membrane association. The palmitoylated peptides were able to fuse both model and natural membranes. The extent of fusion depended on the length of the peptides and the number and positions of covalently linked palmitic acids. Peptide-mediated fusion was suppressed by lysolipid and involved both outer and inner leaflets of the lipid bilayer, which is characteristic of natural membrane fusion. Our results suggest an important role for the cysteine-rich palmitoylated domain of SNAP-23 in promoting membrane fusion in cells.  相似文献   

4.
Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses.  相似文献   

5.
Segments of viral fusion proteins play an important role in viral fusion. They are defined by a number of criteria, including the sensitivity of this region of the viral fusion protein to loss of function as a consequence of mutation. In addition, small model peptides designed to mimic this segment of viral fusion proteins often have some membrane perturbing activity. The properties of viral fusion peptides are quite varied. Many are found at the amino terminus of viral fusion proteins. As isolated peptides, they have been found to form both α-helical as well as β-structure. In addition, some viruses have internal fusion peptides. Just as there are several structural motifs for viral fusion peptides, there are also several mechanisms by which they accelerate the process of membrane fusion. These include the promotion of negative curvature, lowering the rupture tension of the lipid monolayer, acting as an anchor to join the fusion membranes, transmitting a force to the membrane or imparting energy to the system by other means. It is not likely that the fusion peptide can fulfill all of these diverse roles and future studies will elucidate which of these mechanisms is most important for the action of individual viral fusion peptides.  相似文献   

6.
The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain region of the fluid bilayer. FTIR studies of the Cz=O stretching band indicated that incorporation of FP31 into phosphatidylcholine membranes produced a strong dehydration of the polar part of the bilayer. In mixtures with L-alpha-dielaidoylphosphatidylethanolamine (DEPE), increasing FP31 concentrations broadened and shifted to lower temperatures the lamellar to hexagonal-HII phase transition, indicating that this peptide destabilized the bilayer and promoted formation of the hexagonal-HII phase. The results are discussed in terms of lipid-peptide hydrophobic mismatch and its influence on the role of the N-terminal polypeptide of CDV F1 protein in viral membrane fusion.  相似文献   

7.
The mechanism of membrane fusion induced by the influenza virus hemagglutinin (HA) has been extensively characterized. Fusion is triggered by low pH, which induces conformational changes in the protein, leading to insertion of a hydrophobic 'fusion peptide' into the viral membrane and the target membrane for fusion. Insertion perturbs the target membrane, and hour glass-shaped lipidic fusion intermediates, called stalks, fusing the outer monolayers of the two membranes, are formed. Stalk formation is followed by complete fusion of the two membranes. Structures similar to those formed by HA at the pH of fusion are found not only in many other viral fusion proteins, but are also formed by SNAREs, proteins involved in intracellular fusion. Substances that inhibit or promote HA-induced fusion because they affect stalk formation, also inhibit or promote intracellular fusion, cell–cell fusion and even intracellular fission similarly. Therefore, the mechanism of influenza HA-induced fusion may be a paradigm for many intracellular fusion events.  相似文献   

8.
Infection by enveloped viruses requires fusion between the viral and cellular membranes, a process mediated by specific viral envelope glycoproteins. Information from studies with whole viruses, as well as protein dissection, has suggested that the fusion glycoprotein (F) from Paramyxoviridae, a family that includes major human pathogens, has two hydrophobic segments, termed fusion peptides. These peptides are directly responsible for the membrane fusion event. The recently determined three-dimensional structure of the pre-fusion conformation of the F protein supported these predictions and enabled the formulation of: (1) a detailed model for the initial interaction between F and the target membrane, (2) a new model for Paramyxovirus-induced membrane fusion that can be extended to other viral families, and (3) a novel strategy for developing better inhibitors of paramyxovirus infection.  相似文献   

9.
The low pH-dependent fusion of lipid membranes induced by two types of the fatty acylated influenza viral hemagglutinin has been studied by use of an energy transfer assay. When protein bound fatty acids were released from the hemagglutinin by hydroxylamine treatment viral fusion activity was inhibited. The extent of fusion inhibition correlates with the amount of fatty acids cleaved from the hemagglutinin. Virosomes prepared from fowl plague virus containing fatty acid free hemagglutinin showed a much lower fusion activity than control virosomes containing fatty acylated hemagglutinin. The hydroxylamine treatment applied has no detectable effects on the virus other than fatty acid release from its spike glycoproteins. These results support our previous hypothesis that protein bound fatty acids are involved in the induction of membrane fusion by the influenza hemagglutinin.  相似文献   

10.
Central to our understanding of human immunodeficiency virus-induced fusion is the high resolution structure of fragments of the gp41 fusion protein folded in a low energy core conformation. However, regions fundamental to fusion, like the fusion peptide (FP), have yet to be characterized in the context of the cognate protein regardless of its conformation. Based on conformation-specific monoclonal antibody recognition, we identified the polar region consecutive to the N36 fragment as a stabilizer of trimeric coiled-coil assembly, thereby enhancing inhibitory potency. This tertiary organization is retained in the context of the hydrophobic FP (N70 fragment). Our data indicate that the N70 fragment recapitulates the expected organization of this region in the viral fusion intermediate (N-terminal half of the pre-hairpin intermediate (N-PHI)), which happens to be the prime target for fusion inhibitors. Regarding the low energy conformation, we show for the first time core formation in the context of the FP (N70 core). The alpha-helical and coiled-coil stabilizing polar region confers substantial thermal stability to the core, whereas the hydrophobic FP does not add further stability. For the two key fusion conformations, N-PHI and N70 core, we find that the FP adopts a nonhelical structure and directs higher order assembly (assembly of coiled coils in N-PHI and assembly of bundles in the N70 core). This supra-molecular organization of coiled coils or folded cores is seen only in the context of the FP. This study is the first to characterize the FP region in the context of the folded core and provides a basic understanding of the role of the elusive FP for key gp41 fusion conformations.  相似文献   

11.
Samuel O  Shai Y 《Biochemistry》2001,40(5):1340-1349
Paramyxoviruses penetrate into their host cells by fusing their membranes with the plasma membrane. The hydrophobic N terminus of their F1 protein, termed the 'fusion peptide', is thought to be responsible for this process. Recently, an additional internal fusion peptide, homologous in sequence to the N-terminal fusion peptide of HIV-1, was identified in the Sendai virus F1 protein. Here, we investigated whether the presence of an additional internal fusion peptide is a general feature of paramyxoviridae. To this end, we synthesized and structurally and functionally characterized three peptides: (i) MV-197, which corresponds to an internal segment of the F1 protein of the measles virus (amino acids 197-225), homologous in location but not in sequence to the internal fusion peptide of the Sendai virus, (ii) Mu-MV-197, a randomized version of MV-197, and (iii) the 33 amino acid N-terminal fusion peptide of the measles virus. Remarkably, only MV-197 was highly fusogenic toward large unilamellar vesicles composed of either zwitterionic (phosphatidylcholine or phosphatidylcholine/sphingomyelin/cholesterol, a composition similar to that of human cell membranes) or negatively charged phospholipids. Binding experiments, circular dichroism spectroscopy in phospholipid membranes, and homo energy-transfer studies with fluorescently labeled peptides revealed that MV-197 adopts a predominant alpha-helical structure and shares properties similar to those reported for known fusion peptides. These results suggest that the presence of two fusion peptides in the F1 protein is a general feature of paramyxoviruses.  相似文献   

12.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.  相似文献   

13.
Fusion between viral and host cell membranes is the initial step of human immunodeficiency virus infection and is mediated by the gp41 protein, which is embedded in the viral membrane. The ∼ 20-residue N-terminal fusion peptide (FP) region of gp41 binds to the host cell membrane and plays a critical role in fusion catalysis. Key gp41 fusion conformations include an early pre-hairpin intermediate (PHI) characterized by extended coiled-coil structure in the region C-terminal of the FP and a final hairpin state with compact six-helix bundle structure. The large “N70” (gp41 1-70) and “FP-Hairpin” constructs of the present study contained the FP and respectively modeled the PHI and hairpin conformations. Comparison was also made to the shorter “FP34” (gp41 1-34) fragment. Studies were done in membranes with physiologically relevant cholesterol content and in membranes without cholesterol. In either membrane type, there were large differences in fusion function among the constructs with little fusion induced by FP-Hairpin, moderate fusion for FP34, and very rapid fusion for N70. Overall, our findings support acceleration of gp41-induced membrane fusion by early PHI conformation and fusion arrest after folding to the final six-helix bundle structure. FP secondary structure at Leu7 of the membrane-associated constructs was probed by solid-state nuclear magnetic resonance and showed populations of molecules with either β-sheet or helical structure with greater β-sheet population observed for FP34 than for N70 or FP-Hairpin. The large differences in fusion function among the constructs were not obviously correlated with FP secondary structure. Observation of cholesterol-dependent FP structure for fusogenic FP34 and N70 and cholesterol-independent structure for non-fusogenic FP-Hairpin was consistent with membrane insertion of the FP for FP34 and N70 and with lack of insertion for FP-Hairpin. Membrane insertion of the FP may therefore be associated with the early PHI conformation and FP withdrawal with the final hairpin conformation.  相似文献   

14.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

15.
The fusion of enveloped viruses to target membranes is promoted by certain viral fusion proteins. However, many other proteins and peptides stabilize bilayer membranes and inhibit membrane fusion. We have evaluated some characteristics of the interaction of peptides that are models of segments of measles and influenza fusion proteins with membranes. Our results indicate that these models of the fusogenic domains of viral fusion proteins promote conversion of model membrane bilayers to nonbilayer phases. This is opposite to the effects of peptides and proteins that inhibit viral fusion. A peptide model for the fusion segment of the HA protein of influenza increased membrane leakage as well as promoted the formation of nonbilayer phases upon acidification from pH 7-5. We analyze the gross conformational features of the peptides, and speculate on how these conformational features relate to the structures of the intact proteins and to their role in promoting membrane fusion.  相似文献   

16.
Coronavirus entry is mediated by the viral spike (S) glycoprotein. The 180-kDa oligomeric S protein of the murine coronavirus mouse hepatitis virus strain A59 is posttranslationally cleaved into an S1 receptor binding unit and an S2 membrane fusion unit. The latter is thought to contain an internal fusion peptide and has two 4,3 hydrophobic (heptad) repeat regions designated HR1 and HR2. HR2 is located close to the membrane anchor, and HR1 is some 170 amino acids (aa) upstream of it. Heptad repeat (HR) regions are found in fusion proteins of many different viruses and form an important characteristic of class I viral fusion proteins. We investigated the role of these regions in coronavirus membrane fusion. Peptides HR1 (96 aa) and HR2 (39 aa), corresponding to the HR1 and HR2 regions, were produced in Escherichia coli. When mixed together, the two peptides were found to assemble into an extremely stable oligomeric complex. Both on their own and within the complex, the peptides were highly alpha helical. Electron microscopic analysis of the complex revealed a rod-like structure approximately 14.5 nm in length. Limited proteolysis in combination with mass spectrometry indicated that HR1 and HR2 occur in the complex in an antiparallel fashion. In the native protein, such a conformation would bring the proposed fusion peptide, located in the N-terminal domain of HR1, and the transmembrane anchor into close proximity. Using biological assays, the HR2 peptide was shown to be a potent inhibitor of virus entry into the cell, as well as of cell-cell fusion. Both biochemical and functional data show that the coronavirus spike protein is a class I viral fusion protein.  相似文献   

17.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out fusion between the virus and the host cells. However, the exact mechanism of the cell fusion process is not well understood. Current model suggests that a conformational transition, upon receptor recognition, of the two heptad core regions of S2 may expose the hydrophobic fusogenic peptide or fusion peptide for membrane insertion. Three regions of the S2 subunit have been proposed to be involved in cell–cell fusion. The N-terminal fusion peptide (FP, residues 770–788), an internal fusion peptide (IFP, residues 873–888) and the pre-transmembrane region (PTM, residues 1185–1202) demonstrated interactions with model lipid membranes and potentially involved in the fusion process. Here, we have determined atomic resolution structures of these three peptides in DPC detergent micelles by solution NMR. FP assumes α-helical conformation with significant distortion at the central Gly residues; enabling a close packing among sidechains of aromatic residues including W, Y and F. The 3-D structure of PMT is characterized by a helix–loop–helix with extensive aromatic interactions within the helices. IFP adopts a rather straight α-helical conformation defined by packing among sidechains of aromatic and aliphatic residues. Paramagnetic spin labeled NMR has demonstrated surface localization of PMT whereas FP and IFP inserted into the micelles. Collectively, data presented in this study will aid in understanding fusion mechanism of SARS-CoV.  相似文献   

18.
Viral envelope glycoproteins promote infection by mediating fusion between viral and cellular membranes. Fusion occurs after dramatic conformational changes within fusion proteins, leading to the exposure of a short stretch of mostly apolar residues, termed the fusion peptide, which is presumed to insert into the membrane and initiate the fusion process. The typical global composition of fusion peptides, rich in hydrophobic but also in small amino acids such as alanine and glycine, was used here as bait to detect other peptidic segments that can insert into membranes. We so evidenced a similar composition in several cytotoxic peptides, which promote pore formation such as peptides involved in amyloidoses and hydrophobic alpha-hairpins of pore-forming toxins. It is suggested that the structural plasticity observed for several membrane active peptides can be conferred by this particular global amino acid composition, which could be thus used to predict such functional behavior from genome data.  相似文献   

19.
Over the past decades, membranotropic peptides such as positively charged cell-penetrating peptides (CPPs) or amphipathic antimicrobial peptides (AMPs) have received increasing interest in order to improve therapeutic agent cellular uptake.As far as we are concerned, we were interested in studying HCV fusion peptides as putative anchors. Two peptides, HCV6 and HCV7, were identified and conjugated to a fluorescent tag NBD and tested for their interaction with liposomes as model membranes. DSC and spectrofluorescence analyses demonstrate HCV7 propensity to insert or internalize in vesicles containing anionic lipids DMPG whereas no activity was observed with zwitterionic DMPC. This behavior could be explained by the peptide sequence containing a cationic arginine residue. On the contrary, HCV6 did not exhibit any membranotropic activity but was the only sequence able to induce liposomes' fusion or aggregation monitored by spectrofluorescence and DLS. This two peptides mild activity was related to their inefficient structuration in contact with membrane mimetics, which was demonstrated by CD and NMR experiments.Altogether, our data allowed us to identify two promising membrane-active peptides from E1 and E2 HCV viral proteins, one fusogenic (HCV6) and the other membranotropic (HCV7). The latter was also confirmed by fluorescence microscopy with CHO cells, indicating that HCV7 could cross the plasma membrane via an endocytosis process. Therefore, this study provides new evidences supporting the identification of HCV6 as the HCV fusion peptide as well as insights on a novel membranotropic peptide from the HCV-E2 viral protein.  相似文献   

20.
Intracellular proteins of eukaryotic cells are frequently covalently modified by the addition of long chain fatty acids. These modifications are thought to allow otherwise soluble proteins to associate with membranes by lipid-lipid based hydrophobic interactions. The purpose of this work was to quantify the effect of acyl chain length on hydrophobic interactions between acylated proteins and phospholipid monolayers. The binding of an artificially acylated model protein to electrically neutral phospholipids was studied by surface plasmon resonance, using BIACORE. Kinetic rates for the binding of bovine pancreatic ribonuclease A (RNase A), monoacylated on its N-terminal lysine with fatty acids of 10, 12, 14, 16 or 18 carbon atoms, to phospholipids on hydrophobic sensor chips, were measured. Unlike unmodified ribonuclease, acylated RNase A bound to the phospholipids, and the association level increased with the acyl chain length to reach a maximum for C16. Reproducible kinetics were obtained which did not fit a 1:1 Langmuir model but rather a two-step binding profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号