首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid formation is a nucleation-dependent process that is accelerated dramatically in vivo and in vitro upon addition of appropriate fibril seeds. A potent species barrier can be effective in this reaction if donor and recipient come from different biological species. This species barrier is thought to reflect differences in the amino acid sequence between seed and target polypeptide. Here we present an in vitro mutagenic cross-seeding analysis of Alzheimer's Abeta(1-40) peptide in which we mapped out the effect of systematically varied amino acid replacements on the propensity of seed-dependent amyloid fibril formation. We find that the susceptibility of different peptides toward cross-seeding relates to the intrinsic aggregation propensity of the respective polypeptide chain and, therefore, to properties such as beta-sheet propensity and hydrophobicity. These data imply that the seed-dependent formation of amyloid-like fibrils is affected by the intrinsic properties of the polypeptide chain in a manner that is similar to what has been described previously for aggregation reactions in general. Hence, the nucleus acts in this case as a catalyst that promotes the fibrillation of different polypeptide chains according to their intrinsic structural predilection.  相似文献   

2.
Despite much progress in understanding the folding and the aggregation processes of proteins, the rules defining their interplay have yet to be fully defined. This problem is of particular importance since many diseases are initiated by protein unfolding and hence the propensity to aggregate competes with intramolecular collapse and other folding events. Here, we describe the roles of intramolecular and intermolecular interactions in defining the length of the lag time and the apparent rate of elongation of the 100-residue protein human β2-microglobulin at pH 2.5, commencing from an acid-denatured state that lacks persistent structure but contains significant non-random hydrophobic interactions. Using a combination of site-directed mutagenesis, quantitative kinetic analysis and computational methods, we show that only a single region of about 10 residues in length, determines the rate of fibril formation, despite the fact that other regions exhibit a significant intrinsic propensity for aggregation. We rationalise these results by analysing the effect of incorporating the conformational properties of acid-unfolded β2-microglobulin and its variants at pH 2.5 as measured by NMR spectroscopy into the Zyggregator aggregation prediction algorithm. These results demonstrate that residual structure in the precursor state modulates the intrinsic propensity of the polypeptide chain to aggregate and that the algorithm developed here allows the key regions for aggregation to be more clearly identified and the rates of their self-association to be predicted. Given the common propensity of unfolded chains to form non-random intramolecular interactions as monomers and to self-assemble subsequently into amyloid fibrils, the approach developed should find widespread utility for the prediction of regions important in amyloid formation and their rates of self-assembly.  相似文献   

3.
We show that a series of peptides corresponding to individual β-strands in native β-lactoglobulin readily form amyloid aggregates and that such aggregates are capable of seeding fibril formation by a full-length form of β-lactoglobulin in which the disulfide bonds are reduced. By contrast, preformed fibrils corresponding to only one of the β-strands that we considered, βA, were found to promote fibril formation by a full-length form of β-lactoglobulin in which the disulfide bonds are intact. These results indicate that regions of high intrinsic aggregation propensity do not give rise to aggregation unless at least partial unfolding takes place. Furthermore, we found that the high aggregation propensity of one of the edge strands, βI, promotes dimerisation of the native structure rather than misfolding and aggregation since the structure of βI is stabilised by the presence of a disulfide bond. These findings demonstrate that the interactions that promote folding and native-state oligomerisation can also result in high intrinsic amyloidogenicity. However, we show that the presence of the remainder of the sequence dramatically reduces the net overall aggregation propensity by negative design principles that we suggest are very common in biological systems as a result of evolutionary processes.  相似文献   

4.
Aggregation of amyloid-β (Aβ) peptide, a 39- to 43-residue fragment of the amyloid precursor protein, is associated with Alzheimer's disease, the most common form of dementia in the elderly population. Several experimental studies have tried to characterize the atomic details of amyloid fibrils, which are the final product of Aβ aggregation. Much less is known about species forming during the early stages of aggregation, in particular about the monomeric state of the Aβ peptide that may be viewed as the product of the very first step in the hypothesized amyloid cascade. Here, the equilibrium ensembles of monomeric Aβ alloforms Aβ1-40 and Aβ1-42 are investigated by Monte Carlo simulations using an atomistic force field and implicit solvent model that have been shown previously to correctly reproduce the ensemble properties of other intrinsically disordered polypeptides.Our simulation results indicate that at physiological temperatures, both alloforms of Aβ assume a largely collapsed globular structure. Conformations feature a fluid hydrophobic core formed, on average, by contacts both within and between the two segments comprising residues 12-21 and 24-40/42, respectively. Furthermore, the 11 N-terminal residues are completely unstructured, and all charged side chains, in particular those of Glu22 and Asp23, remain exposed to solvent. Taken together, these observations indicate a micelle-like† architecture at the monomer level whose implications for oligomerization, as well as fibril formation and elongation, are discussed. We establish quantitatively the intrinsic disorder of Aβ and find the propensity to form regular secondary structure to be low but sequence specific. In the presence of a global and unspecific bias for backbone conformations to populate the β-basin, the β-sheet propensity along the sequence is consistent with the arrangement of the monomer within the fibril, as derived from solid-state NMR data. These observations indicate that the primary sequence partially encodes fibril structure, but that fibril elongation must be thought of as a templated assembly step.  相似文献   

5.
Amyloid is a highly ordered form of aggregate comprising long, straight and unbranched proteinaceous fibrils that are formed with characteristic nucleation-dependent kinetics in vitro. Currently, the structural molecular mechanism of fibril nucleation and elongation is poorly understood. Here, we investigate the role of the sequence and structure of the initial monomeric precursor in determining the rates of nucleation and elongation of human β2-microglobulin (β2m). We describe the kinetics of seeded and spontaneous (unseeded) fibril growth of wild-type β2m and 12 variants at pH 2.5, targeting specifically an aromatic-rich region of the polypeptide chain (residues 62-70) that has been predicted to be highly amyloidogenic. The results reveal the importance of aromatic residues in this part of the β2m sequence in fibril formation under the conditions explored and show that this region of the polypeptide chain is involved in both the nucleation and the elongation phases of fibril formation. Structural analysis of the conformational properties of the unfolded monomer for each variant using NMR relaxation methods revealed that all variants contain significant non-random structure involving two hydrophobic clusters comprising regions 29-51 and 58-79, the extent of which is critically dependent on the sequence. No direct correlation was observed, however, between the extent of non-random structure in the unfolded state and the rates of fibril nucleation and elongation, suggesting that the early stages of aggregation involve significant conformational changes from the initial unfolded state. Together, the data suggest a model for β2m amyloid formation in which structurally specific interactions involving the highly hydrophobic and aromatic-rich region comprising residues 62-70 provide a complementary interface that is key to the generation of amyloid fibrils for this protein at acidic pH.  相似文献   

6.
Amyloid fibrils are insoluble mainly beta-sheet aggregates of proteins or peptides. The multi-step process of amyloid aggregation is one of the major research topics in structural biology and biophysics because of its relevance in protein misfolding diseases like Alzheimer's, Parkinson's, Creutzfeld-Jacob's, and type II diabetes. Yet, the detailed mechanism of oligomer formation and the influence of protein stability on the aggregation kinetics are still matters of debate. Here a coarse-grained model of an amphipathic polypeptide, characterized by a free energy profile with distinct amyloid-competent (i.e. beta-prone) and amyloid-protected states, is used to investigate the kinetics of aggregation and the pathways of fibril formation. The simulation results suggest that by simply increasing the relative stability of the beta-prone state of the polypeptide, disordered aggregation changes into fibrillogenesis with the presence of oligomeric on-pathway intermediates, and finally without intermediates in the case of a very stable beta-prone state. The minimal-size aggregate able to form a fibril is generated by collisions of oligomers or monomers for polypeptides with unstable or stable beta-prone state, respectively. The simulation results provide a basis for understanding the wide range of amyloid-aggregation mechanisms observed in peptides and proteins. Moreover, they allow us to interpret at a molecular level the much faster kinetics of assembly of a recently discovered functional amyloid with respect to the very slow pathological aggregation.  相似文献   

7.
The aggregation of soluble proteins into fibrillar species is a complex process that spans many lengths and time scales, and that involves the formation of numerous on-pathway and off-pathway intermediate species. Despite this complexity, several elements underlying the aggregation process appear to be universal. The kinetics typically follows a nucleation-growth process, and proteins with very different sequences aggregate to form similar fibril structures, populating intermediates with sufficient structural similarity to bind to a common antibody. This review focuses on a computational approach that exploits the common features of aggregation to simplify or 'coarse-grain' the representation of the protein. We highlight recent developments in coarse-grained modeling and illustrate how these models have been able to shed new light into the mechanisms of protein aggregation and the nature of aggregation intermediates. The roles of aggregation prone conformations in the monomeric state and the influence of inherent β-sheet and aggregation propensities in modulating aggregation pathways are discussed.  相似文献   

8.
Hill SE  Miti T  Richmond T  Muschol M 《PloS one》2011,6(4):e18171
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path.  相似文献   

9.
10.
The 17-amino-acid N-terminal segment (htt(NT)) that leads into the polyglutamine (polyQ) segment in the Huntington's disease protein huntingtin (htt) dramatically increases aggregation rates and changes the aggregation mechanism, compared to a simple polyQ peptide of similar length. With polyQ segments near or above the pathological repeat length threshold of about 37, aggregation of htt N-terminal fragments is so rapid that it is difficult to tease out mechanistic details. We describe here the use of very short polyQ repeat lengths in htt N-terminal fragments to slow this disease-associated aggregation. Although all of these peptides, in addition to htt(NT) itself, form α-helix-rich oligomeric intermediates, only peptides with Q(N) of eight or longer mature into amyloid-like aggregates, doing so by a slow increase in β-structure. Concentration-dependent circular dichroism and analytical ultracentrifugation suggest that the htt(NT) sequence, with or without added glutamine residues, exists in solution as an equilibrium between disordered monomer and α-helical tetramer. Higher order, α-helix rich oligomers appear to be built up via these tetramers. However, only htt(NT)Q(N) peptides with N=8 or more undergo conversion into polyQ β-sheet aggregates. These final amyloid-like aggregates not only feature the expected high β-sheet content but also retain an element of solvent-exposed α-helix. The α-helix-rich oligomeric intermediates appear to be both on- and off-pathway, with some oligomers serving as the pool from within which nuclei emerge, while those that fail to undergo amyloid nucleation serve as a reservoir for release of monomers to support fibril elongation. Based on a regular pattern of multimers observed in analytical ultracentrifugation, and a concentration dependence of α-helix formation in CD spectroscopy, it is likely that these oligomers assemble via a four-helix assembly unit. PolyQ expansion in these peptides appears to enhance the rates of both oligomer formation and nucleation from within the oligomer population, by structural mechanisms that remain unclear.  相似文献   

11.
Human islet amyloid polypeptide (hIAPP) is a cytotoxic protein that aggregates into oligomers and fibrils that kill pancreatic β-cells. Here we analyze hIAPP aggregation in vitro, measured via thioflavin-T fluorescence. We use mass-action kinetics and scaling analysis to reconstruct the aggregation pathway, and find that the initiation step requires four hIAPP monomers. After this step, monomers join the nucleus in pairs, until the first stable nucleus (of size approximately 20 monomers) is formed. This nucleus then elongates by successive addition of single monomers. We find that the best-fit of our data is achieved when we include a secondary fibril-dependent nucleation pathway in the reaction scheme. We predict how interventions that change rates of fibril elongation or nucleation rates affect the accumulation of potentially cytotoxic oligomer species. Our results demonstrate the power of scaling analysis in reverse engineering biochemical aggregation pathways.  相似文献   

12.
Among the many parameters that have been proposed to promote amyloid fibril formation is the pi-stacking of aromatic residues. We have studied the amyloid aggregation of several mutants of human muscle acylphosphatase in which an aromatic residue was substituted with a non-aromatic one. The aggregation rate was determined using the Thioflavin T test under conditions in which the variants populated initially an ensemble of partially unfolded conformations. Substitutions in aggregation-promoting fragments of the sequence result in a dramatically decreased aggregation rate of the protein, confirming the propensity of aromatic residues to promote this process. Nevertheless, a statistical analysis shows that the measured decrease of aggregation rate following mutation arises predominantly from a reduction of hydrophobicity and intrinsic beta-sheet propensity. This suggests that aromatic residues favor aggregation because of these factors rather than for their aromaticity.  相似文献   

13.
The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.  相似文献   

14.
An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington''s disease, in vitro. Huntington''s disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer''s and Parkinson''s disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.  相似文献   

15.
Large soluble oligomeric species are observed as probable intermediates during fibril formation in aggregations of Parkinson’s disease (PD). Fibrillar deposits occur in PD. Amyloid forms α-Synuclein is one of the main compounds aggregations. β-Casein, a member of the Casein family, has been demonstrated to inhibit α-Synuclein aggregation by chaperone-like activity. In this study, we investigated the effect of chaperone activity of β-Casein in preventing the aggregation of α-Synuclein protein. We have examined the effect of β-Casein in preventing α-Synuclein aggregation by using from Thioflavin T-binding assay, transmission electron microscopy, ANS-binding assay, circular dichroism spectroscopy and FTIR spectroscopy. Results from the ThT binding assay demonstrated an increase in the ThT fluorescence intensity of α-Synuclein incubated in absence of β-Casein but in its presence fluorescence intensity is decreased. Electron microscopy data also indicated that β-Casein decreased the aggregation content of α-Synuclein. ANS results also showed that β-Casein significantly decreased the the hydrophobic area in α-Synuclein incubated. Circular dichroism spectroscopy (CD) results also showed that β-sheet structures of α-Synuclein incubated change to structural α-helical and β-turn in presence of β-Casein. FTIR spectroscopy indicates the presence of β-sheet structures in α-Synuclein incubated in absence of β-Casein and β-sheet structures decreased in its presence. Thus, our results suggest that in vitro, β-Casein interacts with α-Synuclein fibrils, changes the α-Synuclein structure and prevents amyloid fibril formation. This means that β-Casein could be essential for therapies inhibiting aggregation and to be an important therapeutic drug against PD.  相似文献   

16.
Although most proteins can assemble into amyloid-like fibrils in vitro under extreme conditions, how proteins form amyloid fibrils in vivo remains unresolved. Identifying rare aggregation-prone species under physiologically relevant conditions and defining their structural properties is therefore an important challenge. By solving the folding mechanism of the naturally amyloidogenic protein beta-2-microglobulin at pH 7.0 and 37 degrees C and correlating the concentrations of different species with the rate of fibril elongation, we identify a specific folding intermediate, containing a non-native trans-proline isomer, as the direct precursor of fibril elongation. Structural analysis using NMR shows that this species is highly native-like but contains perturbation of the edge strands that normally protect beta-sandwich proteins from self-association. The results demonstrate that aggregation pathways can involve self-assembly of highly native-like folding intermediates, and have implications for the prevention of this, and other, amyloid disorders.  相似文献   

17.
A variety of peptides and peptide derivatives have been constructed using the “β-sheet core segment” of amyloid proteins as inhibitors of amyloidogenic fibrillation. A novel all-d-amino-acid from hIAPP β-sheet core segment (hIAPP 22–27) is demonstrated to inhibit hIAPP fibril formation efficiently both at the phospholipid membrane and in bulk solution. The inhibitor terminates hIAPP aggregation to the α-helical oligomeric intermediates at the membrane surface, whereas it stops the aggregation at the stage of β-sheet oligomeric intermediates in bulk solution. This is the first evidence that the inhibition mechanism of the inhibitor at membrane surface is significantly different from that in bulk solution.  相似文献   

18.
Although small molecules that modulate amyloid formation in vitro have been identified, significant challenges remain in determining precisely how these species act. Here we describe the identification of rifamycin SV as a potent inhibitor of β(2) microglobulin (β(2)m) fibrillogenesis when added during the lag time of assembly or early during fibril elongation. Biochemical experiments demonstrate that the small molecule does not act by a colloidal mechanism. Exploiting the ability of electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to resolve intermediates of amyloid assembly, we show instead that rifamycin SV inhibits β(2)m fibrillation by binding distinct monomeric conformers, disfavoring oligomer formation and diverting the course of assembly to the formation of spherical aggregates. The results demonstrate the power of ESI-IMS-MS to identify specific protein conformers as targets for intervention in fibrillogenesis using small molecules and reveal a mechanism of action in which ligand binding diverts unfolded protein monomers toward alternative assembly pathways.  相似文献   

19.
The misfolding and aggregation of proteins to form amyloid fibrils are associated with a number of debilitating, age-related diseases. Many of the proteins that form amyloid in vivo are lipid-binding proteins, accounting for the significant impact of lipids on the rate of formation and morphology of amyloid fibrils. To systematically investigate the effect of lipid-like compounds, we screened a range of amphipathic lipids and detergents for their effect on amyloid fibril formation by human apolipoprotein (apo) C-II. The initial screen, conducted using a set of amphiphiles at half critical micelle concentration, identified several activators and inhibitors that were selected for further analysis. Sedimentation analysis and circular dichroism studies of apoC-II at low, non-fibril-forming concentrations (0.05 mg/ml) revealed that all of the inhibitors induced the formation of apoC-II dimers enriched in α-helical content while the activators promoted the formation of stable apoC-II tetramers with increased β-structure. Kinetic analysis identified modulators of apoC-II fibril formation that were effective at concentrations as low as 10 μM, corresponding to a modulator-to-apoC-II ratio of approximately 1:10. Delayed addition of the test compounds after fibril formation had commenced allowed the effects of selected amphiphiles on fibril elongation to be determined separately from their effects on fibril nucleation. The results indicated that specific amphiphiles induce structural changes in apoC-II that cause separate and independent effects on fibril nucleation and elongation. Low-molecular-weight amphipathic lipids and detergents may serve as useful, stage-specific modulators of protein self-assembly and fibril formation in disease-prevention strategies.  相似文献   

20.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel β-sheet structure, and subsequently, was further refined for Aβ(1-40) to be cross β-sheet with double layered in register parallel β-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel β-sheet structure has been reported to short fragments of Aβ-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号