首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ure2 protein from baker's yeast (Saccharomyces cerevisiae) has prion properties. In vitro, at neutral pH, soluble Ure2p forms long, twisted fibrils. Two models have been proposed to account for Ure2p polymerization. The first postulates that a segment of 70 amino acid residues in the flexible N-terminal domain from different Ure2p molecules forms a parallel superpleated beta-structure running along the fibrils. The second hypothesizes that assembly of full-length Ure2p is driven by limited conformational rearrangements and non-native inter- and intramolecular interactions. The knowledge of the three-dimensional structure of the fibrillar form of Ure2p is critical for understanding the molecular events leading to the polymerization of soluble Ure2p into fibrils and hence for the design of inhibitors that might have therapeutic potential as yeast prions possessing domains rich in N and Q residues, similar to huntingtin. Solvent-accessibility studies using hydrogen/deuterium exchange monitored by mass spectrometry (HXMS) can provide insights into the structure of the fibrillar form of Ure2p and characterize at the molecular level the conformational rearrangements that occur upon assembly, in particular through the identification of protected regions and their localization in the overall structure of the protein. We have analyzed the changes in Ure2p structure associated with its assembly into fibrils using HXMS. The deuterium incorporation profile along the sequence allows the identification of the regions that exhibit the most important conformational change. Our data reveal that Ure2p undergoes minor structural changes upon assembly. While polypeptides [82-92] and [13-37] exhibit significant increased and decreased exposure to the solvent, respectively, no marked change was observed for the rest of the protein upon assembly. Our results afford new insights into the conformational rearrangements that lead to the assembly of Ure2p into fibrils and the propagation of the [URE3] element in yeast.  相似文献   

2.
The changes in backbone hydrogen/deuterium (H/2H) exchange in the regulatory subunit (R(I)alpha(94-244)) of cyclic AMP-dependent protein kinase A (PKA) were probed by MALDI-TOF mass spectrometry. The three naturally occurring states of the regulatory subunit were studied: (1) free R(I)alpha(94-244), which likely represents newly synthesized protein, (2) R(I)alpha(94-244) bound to the catalytic (C) subunit, or holoenzyme, and (3) R(I)alpha(94-244) bound to cAMP. Protection from amide exchange upon C-subunit binding was observed for the helical subdomain, including the A-helix and B-helix, pointing to regions adjacent to those shown to be important by mutagenesis. In addition, C-subunit binding caused changes in observed amide exchange in the distal cAMP-binding pocket. Conversely, cAMP binding caused protection in the cAMP-binding pocket and increased exchange in the helical subdomain. These results suggest that the mutually exclusive binding of either cAMP or C-subunit is controlled by binding at one site transmitting long distance changes to the other site.  相似文献   

3.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.  相似文献   

4.
5.
The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate alpha-helical state to the stable end form called the beta-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the alpha-helical state. The beta-sheet state can be induced at elevated temperature in the presence of detergent. The structural changes of SC3 were monitored by various mass spectrometry techniques. We show that the so-called second loop of SC3 (C39-S72) has a high affinity for Teflon. Binding of this part of SC3 to Teflon was accompanied by the formation of alpha-helical structure and resulted in low solvent accessibility. The solvent-protected region of the second loop extended upon conversion to the beta-sheet state. In contrast, the C-terminal part of SC3 became more exposed to the solvent. The results indicate that the second loop of class I hydrophobins plays a pivotal role in self-assembly at the hydrophilic-hydrophobic interface. Of interest, this loop is much smaller in case of class II hydrophobins, which may explain the differences in their assembly.  相似文献   

6.
The cyclic purine nucleotides cAMP and cGMP are well-characterized second messengers and activators of PKA and PKG, respectively. In contrast, the functions of the cyclic pyrimidine nucleotides cCMP and cUMP are poorly understood. cCMP induces relaxation of smooth muscle via PKGI, and phosphodiesterases differentially hydrolyze cNMPs. Here, we report that cNMPs differentially activate PKA isoforms and PKGIα. The combination of cCMP with cAMP reduced the EC50 of cAMP for PKA. PKGIα exhibited higher specificity for the cognate cNMP than PKA. Our data support a role of cCMP and cUMP as second messengers.  相似文献   

7.
Protein kinase A (PKA), a central locus for cAMP signaling in the cell, is composed of regulatory (R) and catalytic (C) subunits. The C-subunits are maintained in an inactive state by binding to the R-subunit dimer in a tetrameric holoenzyme complex (R(2)C(2)). PKA is activated by cAMP binding to the R-subunits which induces a conformational change leading to release of the active C-subunit. Enzymatic activity of the C-subunit is thus regulated by cAMP via the R-subunit, which toggles between cAMP and C-subunit bound states. The R-subunit is composed of a dimerization/docking (D/D) domain connected to two cAMP-binding domains (cAMP:A and cAMP:B). While crystal structures of the free C-subunit and cAMP-bound states of a deletion mutant of the R-subunit are known, there is no structure of the holoenzyme complex or of the cAMP-free state of the R-subunit. An important step in understanding the cAMP-dependent activation of PKA is to map the R-C interface and characterize the mutually exclusive interactions of the R-subunit with cAMP and C-subunit. Amide hydrogen/deuterium exchange mass spectrometry is a suitable method that has provided insights into the different states of the R-subunit in solution, thereby allowing mapping of the effects of cAMP and C-subunit on different regions of the R-subunit. Our study has localized interactions with the C-subunit to a small contiguous surface on the cAMP:A domain and the linker region. In addition, C-subunit binding causes increased amide hydrogen exchange within both cAMP-domains, suggesting that these regions become more flexible in the holoenzyme and are primed to bind cAMP. Furthermore, the difference in the protection patterns between RIalpha and the previously studied RIIbeta upon cAMP-binding suggests isoform-specific differences in cAMP-dependent regulation of PKA activity.  相似文献   

8.
Elucidation of the structure of scrapie prion protein (PrPSc), essential to understand the molecular mechanism of prion transmission, continues to be one of the major challenges in prion research and is hampered by the insolubility and polymeric character of PrPSc. Limited proteolysis is a useful tool to obtain insight on structural features of proteins: proteolytic enzymes cleave proteins more readily at exposed sites, preferentially within loops, and rarely in β-strands. We treated PrPSc isolated from brains of hamsters infected with 263K and drowsy prions with varying concentrations of proteinase K (PK). After PK deactivation, PrPSc was denatured, reduced, and cleaved at Cys179 with 2-nitro-5-thiocyanatobenzoic acid. Fragments were analyzed by nano-HPLC/mass spectrometry and matrix-assisted laser desorption/ionization. Besides the known cleavages at positions 90, 86, and 92 for 263K prions and at positions 86, 90, 92, 98, and 101 for drowsy prions, our data clearly demonstrate the existence of additional cleavage sites at more internal positions, including 117, 119, 135, 139, 142, and 154 in both strains. PK concentration dependence analysis and limited proteolysis after partial unfolding of PrPSc confirmed that only the mentioned cleavage sites at the N-terminal side of the PrPSc are susceptible to PK. Our results indicate that besides the “classic” amino-terminal PK cleavage points, PrPSc contains, in its middle core, regions that show some degree of susceptibility to proteases and must therefore correspond to subdomains with some degree of structural flexibility, interspersed with stretches of amino acids of high resistance to proteases. These results are compatible with a structure consisting of short β-sheet stretches connected by loops and turns.  相似文献   

9.
To test the roles of motif and amino acid sequence in the folding mechanisms of TIM barrel proteins, hydrogen-deuterium exchange was used to explore the structure of the stable folding intermediates for the of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS). Previous studies of the urea denaturation of sIGPS revealed the presence of an intermediate that is highly populated at approximately 4.5 M urea and contains approximately 50% of the secondary structure of the native (N) state. Kinetic studies showed that this apparent equilibrium intermediate is actually comprised of two thermodynamically distinct species, I(a) and I(b). To probe the location of the secondary structure in this pair of stable on-pathway intermediates, the equilibrium unfolding process of sIGPS was monitored by hydrogen-deuterium exchange mass spectrometry. The intact protein and pepsin-digested fragments were studied at various concentrations of urea by electrospray and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. Intact sIGPS strongly protects at least 54 amide protons from hydrogen-deuterium exchange in the intermediate states, demonstrating the presence of stable folded cores. When the protection patterns and the exchange mechanisms for the peptides are considered with the proposed folding mechanism, the results can be interpreted to define the structural boundaries of I(a) and I(b). Comparison of these results with previous hydrogen-deuterium exchange studies on another TIM barrel protein of low sequence identify, alpha-tryptophan synthase (alphaTS), indicates that the thermodynamic states corresponding to the folding intermediates are better conserved than their structures. Although the TIM barrel motif appears to define the basic features of the folding free energy surface, the structures of the partially folded states that appear during the folding reaction depend on the amino acid sequence. Markedly, the good correlation between the hydrogen-deuterium exchange patterns of sIGPS and alphaTS with the locations of hydrophobic clusters defined by isoleucine, leucine, and valine residues suggests that branch aliphatic side-chains play a critical role in defining the structures of the equilibrium intermediates.  相似文献   

10.
The primary target of the cAMP analogue 8-pCPT-2′-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2′-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2′-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2′O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2′-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2′-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2′-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2′-O-Me-cAMP did not affect platelet activation at similar concentrations.  相似文献   

11.
Isoform 1 and isoform 2 of exchange protein directly activated by cAMP (Epac1 and Epac2) contribute to cAMP signaling in numerous cellular processes. Their guanine-nucleotide exchange factor (GEF) activity toward the small GTP-binding protein Rap1 is stimulated by the agonist cAMP. CE3F4, a tetrahydroquinoline analog, prevents Epac1 activation in vitro and in living cultured cells by inhibiting the GEF activity of Epac1. However, the activity of the (R)- and (S)-enantiomers of CE3F4, as well as the ability of CE3F4 and its analogs to inhibit Epac2 GEF activity, have not yet been investigated. In this study, we report that (R)-CE3F4 is a more potent cAMP antagonist than racemic CE3F4 and (S)-CE3F4, inhibiting the GEF activity of Epac1 with 10-times more efficiency than (S)-CE3F4. Epac2, in contrast to Epac1, is activated more efficiently by cAMP than by 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (007), an Epac-selective cAMP analog. (R)-CE3F4 displays Epac isoform preference, with 10-fold selectivity for Epac1 over Epac2. Deletion of the N-terminal cyclic nucleotide-binding domain of Epac2 does not affect the characteristics of activation of Epac2 by cAMP and by 007, nor its inhibition by CE3F4. Finally, the evaluation of a series of CE3F4 structural analogs as GEF inhibitors allowed identifying structural features that are important for high Epac1 inhibitory activity of CE3F4. We conclude that the (R)-enantiomer of CE3F4 is a preferential inhibitor of Epac1 with high potency in the low micromolar range, and we suggest that this compound may be a useful pharmacological tool for investigating the functional role of Epac1 in cAMP signaling.  相似文献   

12.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

13.
cAMP signaling is a fundamental cellular process necessary for mediating responses to hormonal stimuli. In contrast to cAMP-dependent activation of protein kinase A (PKA), an important cellular target, far less is known on termination in cAMP signaling, specifically how phosphodiesterases (PDEs) facilitate dissociation and hydrolysis of bound cAMP. In this study, we have probed the dynamics of a ternary complex of PKA and a PDE–RegA with an excess of a PDE-nonhydrolyzable cAMP analog, Sp-cAMPS by amide hydrogen/deuterium exchange mass spectrometry (HDXMS). Our results highlight how HDXMS can be used to monitor reactions together with mapping conformational dynamics of transient signaling complexes. Our results confirm a two-state model for active RegA-mediated dissociation of bound cAMP. Further, our results reveal that Sp-cAMPS and RegA mediate mutually exclusive interactions with the same region of PKA and at specific concentrations of Sp-cAMPS, RegA is capable of blocking Sp-cAMPS reassociation to PKA. This provides a molecular basis for how PDEs modulate levels of intracellular cAMP so that PKA is better suited to responding to fluxes rather than constant levels of cAMP. This study underscores how HDXMS can be a powerful tool for monitoring reactions together with mapping conformational dynamics in signaling proteins. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

14.
Previous studies have shown that the carcinogen N-hydroxy-2-acetylaminofluorene is converted by one-electron oxidants to a free nitroxide radical which dismutates to N-acetoxy-2-acetylaminofluorene and 2-nitrosofluorene. The present study shows that the same oxidation can be achieved with horseradish peroxidase and H2O2. The free radical intermediate was detected by its ESR signal, and the yields of N-acetoxy-2-acetylaminofluorene and of 2-nitrosofluorene were determined under a number of conditions. Addition of tRNA to the reaction mixture containing N-acetoxy-N-2-acetyl[2′-3H]aminofluorene yielded tRNA-bound radioactivity; addition of guanosine yielded a reaction product which appears to be N-guanosin-8-yl)-2-acetylaminofluorene. The latter compound has previously been identified as a reaction product of N-acetoxy-2-acetylaminofluorene and guanosine. Preliminary attempts to demonstrate the formation of a nitroxide free radical or its dismutation products with rat liver mixed function oxidase systems were not successful.  相似文献   

15.

Background

Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target.

Methods

We evaluated seven 1-benzyl-3-ketoindole derivatives (79) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs.

Results

The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy.

Conclusions

A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR.

General significance

The 1-benzyl-3-ketoindole derivatives 79 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.  相似文献   

16.
17.
Previously we detected more than 28 PSD proteins to be phosphorylated by CaM kinase II, and identified 14 protein substrates (Yoshimura, Y., Aoi, T., Yamauchi, T., Mol. Brain Res. 81, 118-128, 2000). In the present study, the remaining substrates were analyzed by protein sequencing and mass spectrometry. We found 6 proteins not previously known to be substrates of CaM kinase II, namely PSD95-associated protein, SAP97, TOAD-64, TNF receptor-associated protein, insulin-receptor tyrosine kinase 58/53 kDa substrate, and homer 1b.  相似文献   

18.
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis.  相似文献   

19.
A phosphate-linked antiporter activity of the glucose-6-phosphate transporter (G6PT) has been recently described in liposomes including the reconstituded transporter protein. We directly investigated the mechanism of glucose-6-phosphate (G6P) transport in rat liver microsomal vesicles. Pre-loading with inorganic phosphate (Pi) did not stimulate G6P or Pi microsomal inward transport. Pi efflux from pre-loaded microsomes could not be enhanced by G6P or Pi addition. Rapid G6P or Pi influx was registered by light-scattering in microsomes not containing G6P or Pi. The G6PT inhibitor, S3483, blocked G6P transport irrespectively of experimental conditions. We conclude that hepatic G6PT functions as an uniporter.  相似文献   

20.
The type II Ca2+/calmodulin-dependent protein kinases (CaMKs) are thought to play a vital role in cellular regulation in mammalian cells. Two genes CMK1 and CMK2 in the Candida albicans genome encode homologues of mammalian CaMKs. In this work, we constructed the cmk1Δ/Δ, the cmk2Δ/Δ and the cmk1Δ/Δcmk2Δ/Δ mutants and found that CaMKs function in cell wall integrity (CWI) and cellular redox regulation. Loss of either CMK1 or CMK2, or both resulted in increased expression of CWI-related genes under Calcofluor white (CFW) treatment. Besides, CaMKs are essential for the maintenance of cellular redox balance. Disruption of either CMK1 or CMK2, or both not only led to a significant increase of intracellular ROS levels, but also led to a decrease of the mitochondrial membrane potential (MMP), suggesting the important roles that CaMKs play in the maintenance of the mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号