首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.  相似文献   

2.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

3.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

4.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

5.
dTDP-l-rhamnose (dTDP-Rha)-synthesizing dTDP-6-deoxy-l-lyxo-4-hexulose reductase (4-KR) and dTDP-Rha 4-epimerase were characterized from Burkholderia thailandensis E264 by utilizing rmlDBth (BTH_I1472) and wbiBBth (BTH_I1476), respectively. Incubation of the recombinant WbiBBth with RmlA/RmlB/RmlC/Tal, which has previously been shown to generate dTDP-6-deoxy-l-talose (dTDP-6dTal) from α-d-glucose-1-phosphate, dTTP, and NADPH, produced dTDP-Rha. 1H NMR measurements confirmed that both RmlA/RmlB/RmlC/Tal/WbiBBth and RmlA/RmlB/RmlC/RmlD produced dTDP-Rha. WbiBBth alone produced dTDP-Rha when incubated with dTDP-6dTal. This is the first report to demonstrate epimerase activity interconverting between dTDP-Rha and dTDP-6dTal.  相似文献   

6.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule.  相似文献   

7.
N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) catalyzes the reversible epimerization between N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-mannosamine (ManNAc). We report here the 2.0 A resolution crystal structure of the GlcNAc 2-epimerase from Anabaena sp. CH1. The structure demonstrates an (alpha/alpha)(6) barrel fold, which shows structural homology with porcine GlcNAc 2-epimerase as well as a number of glycoside hydrolase enzymes and other sugar-metabolizing enzymes. One side of the barrel structure consists of short loops involved in dimer interactions. The other side of the barrel structure is comprised of long loops containing six short beta-sheets, which enclose a putative central active-site pocket. Site-directed mutagenesis of conserved residues near the N-terminal region of the inner alpha helices shows that R57, H239, E308, and H372 are strictly required for activity. E242 and R375 are also essential in catalysis. Based on the structure and kinetic analysis, H239 and H372 may serve as the key active site acid/base catalysts. These results suggest that the (alpha/alpha)(6) barrel represents a steady fold for presenting active-site residues in a cleft at the N-terminal ends of the inner alpha helices, thus forming a fine-tuned catalytic site in GlcNAc 2-epimerase.  相似文献   

8.
High-molecular-mass polysaccharides were released by mild acid degradation of the lipopolysaccharides of two wild-type Vibrio vulnificus strain, a flagellated motile strain CECT 5198 and a non-flagellated non-motile strain S3-I2-36. Studies by sugar analysis and partial acid hydrolysis along with 1H and 13C NMR spectroscopies showed that the polysaccharides from both strains have the same trisaccharide repeating unit of the following structure:→4)-β-d-GlcpNAc3NAcylAN-(1→4)-α-l-GalpNAmA-(1→3)-α-d-QuipNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose, GalNAmA for 2-acetimidoylamino-2-deoxygalacturonic acid, GlcNAc3NAcylAN for 2-acetamido-3-acylamino-2,3-dideoxyglucuronamide and acyl for 4-d-malyl (∼30%) or 2-O-acetyl-4-d-malyl (∼70%). The structure of the polysaccharide studied resembles much that of a marine bacterium Pseudoalteromonas rubra ATCC 29570 reinvestigated in this work. The latter differs in (i) the absolute configuration of malic acid (l vs d), (ii) 3-O-acetylation of GalNAmA and (iii) replacement of QuiNAc with its 4-keto biosynthetic precursor.  相似文献   

9.
Four novel disaccharides of glycosylated 1,5-anhydro-d-ketoses have been prepared: 1,5-anhydro-4-O-β-d-glucopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-galactopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-glucopyranosyl-d-tagatose, and 1,5-anhydro-4-O-β-d-galactopyranosyl-d-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-β-d-fructopyranose, was prepared from d-fructose and was converted into the d-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.  相似文献   

10.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   

11.
The Hypocrea jecorina LXR1 was described as the first fungal l-xylulose reductase responsible for NADPH dependent reduction of l-xylulose to xylitol in l-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal d-mannitol 2-dehydrogenases. Lxr1 and the orthologous Aspergillus nigermtdA are not induced by l-arabinose but expressed at low levels during growth on different carbon sources. Deletion of lxr1 does not affect growth on l-arabinose and l-xylulose reductase activity remains unaltered whereas d-mannitol 2-dehydrogenase activities are reduced. We conclude that LXR1 is a d-mannitol 2-dehydrogenase and that a true LXR1 is still awaiting discovery.  相似文献   

12.
The synthesis of a trisaccharide and a hexasaccharide, the monomer and dimer of the repeating unit of O-antigen polysaccharide from Mesorhizobium huakuii IFO15243, has been accomplished through suitable protecting group manipulations and stereoselective glycosylation reactions starting from commercially available l-rhamnose. The target oligosaccharides in the form of their p-methoxyphenyl glycosides are suitable for further glycoconjugate formation via selective cleavage of this group.  相似文献   

13.
Mortierella alpina is a filamentous fungus commonly found in soil, which is able to produce large amount of polyunsaturated fatty acids. l-Fucose is an important sugar found in a diverse range of organisms, playing a variety of biological roles. In this study, we characterized the de novo biosynthetic pathway of GDP-l-fucose (the nucleotide-activated form of l-fucose) in M. alpina. Genes encoding GDP-d-mannose 4,6-dehydratase (GMD) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GMER) were expressed heterologously in Escherichia coli. The recombinant enzymes were produced as His-tagged fusion proteins. Conversion of GDP-mannose to GDP-4-keto-6-deoxy mannose by GMD and GDP-4-keto-6-deoxy mannose to GDP-l-fucose by GMER were analyzed by capillary electrophoresis, electro-spray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. The km values of GMD for GDP-mannose and GMER for GDP-4-keto-6-deoxy mannose were determined to be 0.77 mM and 1.047 mM, respectively. Both NADH and NADPH may be used by GMER as the coenzyme. The optimum temperature and pH were determined to be 37 °C and pH 9.0 (GMD) or pH 7.0 (GMER). Divalent cations are not required for GMD and GMER activity, and the activities of both enzymes may be enhanced by DTT. To our knowledge this is the first report on the characterization of GDP-l-fucose biosynthetic pathway in fungi.  相似文献   

14.
Based on the O-antigens (O-polysaccharides), one of the most variable cell constituents, 46 O-serogroups have been recognized in the Kauffmann-White serotyping scheme for Salmonella enterica. In this work, the structure of the O-polysaccharide and the genetic organization of the O-antigen gene cluster of S. enterica O56 were investigated. As judged by sugar and methylation analyses, along with NMR spectroscopic data, the O-polysaccharide has a linear tetrasaccharide O-unit, which consists of one residue each of d-ribofuranose, N-acetyl-d-glucosamine, N-acetyl-d-galactosamine, and a novel sugar derivative, 4-(N-acetyl-l-seryl)amino-4,6-dideoxy-d-glucose (d-Qui4NSerAc). The following structure of the O-polysaccharide was established:→3)-β-d-Quip4NSerAc-(1→3)-β-d-Ribf-(1→4)-α-d-GalpNAc-(1→3)-α-d-GlcpNAc-(1→The O-antigen gene cluster of S. enterica O56 having 12 open reading frames was found between the housekeeping genes galF and gnd. A comparison with databases and using the O-antigen structure data enabled us to ascribe functions to genes for (i) synthesis of d-GalNAc and d-Qui4NSerAc, (ii) sugar transfer, and (iii) O-antigen processing, including genes for O-unit flippase (Wzx) and O-antigen polymerase (Wzy).  相似文献   

15.
Higher plants, protists and fungi possess cyanide-resistant respiratory pathway, which is mediated by alternative oxidase (AOX). The activity of AOX has been found to be dependent on several regulatory mechanisms including gene expression and posttranslational regulation. In the present study, we report that the presence of cyanide in culture medium remarkably retarded the growth of alo1/alo1 mutant of Candida albicans, which lacks d-arabinono-1,4-lactone oxidase (ALO) that catalyzes the final step of d-erythroascorbic acid (EASC) biosynthesis. Measurement of respiratory activity and Western blot analysis revealed that increase in the intracellular EASC level induces the expression of AOX in C. albicans. AOX could still be induced by antimycin A, a respiratory inhibitor, in the absence of EASC, suggesting that several factors may act in parallel pathways to induce the expression of AOX. Taken together, our results suggest that EASC plays important roles in activation of cyanide-resistant respiration in C. albicans.  相似文献   

16.
17.
Patrícia N. Refojo 《BBA》2010,1797(8):1477-2181
An alternative complex III (ACIII) is a respiratory complex with quinol:electron acceptor oxidoreductase activity. It is the only example of an enzyme performing complex III function that does not belong to bc1 complex family. ACIII from Rhodothermus (R.) marinus was the first enzyme of this type to be isolated and characterized, and in this work we deepen its characterization. We addressed its interaction with quinol substrate and with the caa3 oxygen reductase, whose coding gene cluster follows that of the ACIII. There is at least, one quinone binding site present in R. marinus ACIII as observed by fluorescence quenching titration of HQNO, a quinone analogue inhibitor. Furthermore, electrophoretic and spectroscopic evidences, taken together with mass spectrometry revealed a structural association between ACIII and caa3 oxygen reductase. The association was also shown to be functional, since quinol:oxygen oxidoreductase activity was observed when the two isolated complexes were put together. This work is thus a step forward in the recognition of the structural and functional diversities of prokaryotic respiratory chains.  相似文献   

18.
Glucosamine 6-phosphate deaminase (NagB) catalyzes the conversion of d-glucosamine 6-phosphate (GlcN6P) to d-fructose 6-phosphate and ammonia. This reaction is the final step of N-acetylglucosamine utilization and decides its metabolic fate. The enzyme from Streptococcus mutans belongs to the monomeric subfamily of NagB. The crystal structure of the native SmuNagB (NagB from S. mutans) presented here, compared with the structures of its homologs BsuNagB (NagB from Bacillus subtilis) and EcoNagB (NagB from E. coli), implies a conformational change of the ‘lid’ motif in the activation of the monomeric NagB enzyme. We have also captured the enzyme-substrate intermediate complex of the NagB family at low pH, where a remarkable loss of the catalytic activity of SmuNagB was detected. The enzyme-substrate intermediate presents the initial step of the GlcN6P deaminase reaction. The structural evidence (1) supports the α-anomer of GlcN6P as the specific natural substrate of NagB; (2) displays the substrate-binding pocket at the active site; and (3) together with the site-directed mutagenesis studies, demonstrates the ring-opening mechanism of an Asn-His-Glu triad that performs the proton transfer from O1 to O5 to open the sugar ring.  相似文献   

19.
The unprotected methyl L-arabinofuranosides, D-ribofuranosides and D-xylofuranosides are transformed into the corresponding S-acetyl-5-thio derivatives by the thio-Mitsunobu reaction. Mesylation and subsequent reaction with sodium hydrogen carbonate led, depending on the configuration of the intermediate, to 2,5-anhydro-2-thio- or 3,5-anhydro-3-thiopentofuranosides. Due to inversion at C-3 or C-2 during the intramolecular nucleophilic displacement the products exhibit L-lyxo-, D-arabino- or D-lyxo-configuration. Analogously, the methyl 2,3-anhydro-D-ribofuranosides yielded 5-thio-S-acetates with intact 2,3-oxirane groups, which were cyclised with sodium hydrogen carbonate by epoxide ring opening and concomitant ring closure to form exclusively 3,5-anhydro-3-thio-D-xylofuranosides. A related 3,5-anhydro-3-seleno-D-lyxofuranoside was obtained by reaction of a 3,5-di-O-mesyl-D-arabinofuranoside with sodium hydrogen selenide. Several X-ray diffraction analyses proved the structures of the products.  相似文献   

20.
1,5-Anhydro-d-fructose was efficiently prepared from d-fructose via regiospecific 1,5-anhydro ring formation of 2,3-O-isopropylidene-1-O-methyl(tolyl)sulfonyl-d-fructopyranose and subsequent deprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号