首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains. Since supramolecular complexes of membrane proteins are difficult to study by conventional approaches, little is known about their composition, organization and assembly. The high signal-to-noise ratio of the images that can be obtained with an atomic force microscope (AFM) makes this instrument a powerful tool to image membrane protein complexes within native membranes. Recently, we have reported high-resolution topographs of junctional microdomains in native eye lens membranes containing two-dimensional (2D) arrays of aquaporin-0 (AQP0) surrounded by connexons. While both proteins are involved in cell adhesion, AQP0 is a specific water channel whereas connexons form cell–cell communication channels with broad substrate specificity. Here, we have performed a detailed analysis of the supramolecular organization of AQP0 tetramers and connexon hexamers in junctional microdomains in the native lens membrane. We present first structural models of these junctional microdomains, which we generated by docking atomic models of AQP0 and connexons into the AFM topographs. The AQP0 2D arrays in the native membrane show the same molecular packing of tetramers seen in highly ordered double-layered 2D crystals obtained through reconstitution of purified AQP0. In contrast, the connexons that surround the AQP0 arrays are only loosely packed. Based on our AFM observations, we propose a mechanism that may explain the supramolecular organization of AQP0 and connexons in junctional domains in native lens membranes.  相似文献   

2.
Gap junctions formed by connexons and thin junctions formed by lens-specific aquaporin 0 (AQP0) mediate the tight packing of fibre cells necessary for lens transparency. Gap junctions conduct water, ions and metabolites between cells, whereas junctional AQP0 seems to be involved in cell adhesion. High-resolution atomic force microscopy (AFM) showed the supramolecular organization of these proteins in native lens core membranes, in which AQP0 forms two-dimensional arrays that are surrounded by densely packed gap junction channels. These junctional microdomains simultaneously provide adhesion and communication between fibre cells. The AFM topographs also showed that the extracellular loops of AQP0 in junctional microdomains adopt a conformation that closely resembles the structure of junctional AQP0, in which the water pore is thought to be closed. Finally, time-lapse AFM imaging provided insights into AQP0 array formation. This first high-resolution view of a multicomponent eukaryotic membrane shows how membrane proteins self-assemble into functional microdomains.  相似文献   

3.
Junctional microdomains, paradigm for membrane protein segregation in functional assemblies, in eye lens fiber cell membranes are constituted of lens-specific aquaporin-0 tetramers (AQP0(4)) and connexin (Cx) hexamers, termed connexons. Both proteins have double function to assure nutrition and mediate adhesion of lens cells. Here we use high-speed atomic force microscopy to examine microdomain protein dynamics at the single-molecule level. We found that the adhesion function of head-to-head associated AQP0(4) and Cx is cooperative. This finding provides first experimental evidence for the mechanistic importance for junctional microdomain formation. From the observation of lateral association-dissociation events of AQP0(4), we determine that the enthalpic energy gain of a single AQP0(4)-AQP0(4) interaction in the membrane plane is -2.7 k(B)T, sufficient to drive formation of microdomains. Connexon association is stronger as dynamics are rarely observed, explaining their rim localization in junctional microdomains.  相似文献   

4.
Using immunohistochemistry and mass spectrometry, differentiation-dependent changes in the subcellular distribution and processing of aquaporin-0 (AQP0) have been mapped in the rat lens. Sections labelled with C-terminal tail AQP0 antibodies yielded two concentric rings of labelling with minimal signal in the lens core. The rings were separated by a transient zone of decreased labelling located prior to the transition of differentiating fiber (DF) cells into mature denucleated fiber (MF) cells. Mass spectrometry showed that the loss of core labelling was due to AQP0 cleavage, while the transient loss of labelling was more likely caused by masking of the antibody epitope. AQP0 subcellular distribution changed with radial distance into the lens. In peripheral DF cells, AQP0 was found throughout both broad and narrow side membranes. In deeper-lying DF cells, AQP0 aggregated into plaque-like structures located on the broad sides. This shift occurred prior to the transient loss of AQP0 signal, and coincided with formation of broad-side membrane invaginations between adjacent fiber cells to which filensin, a known binding partner of AQP0, was also localized. After nuclei loss, AQP0 was once again distributed throughout MF cell membranes. In the absence of protein synthesis, the observed subcellular redistribution of AQP0 in DF and subsequent cleavage of AQP0 in MF are suggestive of a switch in the function of AQP0 from a water channel to a junctional protein.  相似文献   

5.
Observing membrane protein diffusion at subnanometer resolution   总被引:4,自引:0,他引:4  
Single sodium-driven rotors from a bacterial ATP synthase were embedded into a lipid membrane and observed in buffer solution at subnanometer resolution using atomic force microscopy (AFM). Time-lapse AFM topographs show the movement of single proteins within the membrane. Subsequent analysis of their individual trajectories, in consideration of the environment surrounding the moving protein, allow principal modes of the protein motion to be distinguished. Within one trajectory, individual proteins can undergo movements assigned to free as well as to obstacled diffusion. The diffusion constants of these two modes of motion are considerably different. Without the structural information about the membrane environment restricting the moving proteins, it would not be possible to reveal insight into these mechanisms. The high-resolution AFM topographs suggest that, in future studies, such data revealed under various physiological conditions will provide novel insights into molecular mechanisms that drive membrane protein assembly and supply excellent boundary conditions to model protein-protein arrangements.  相似文献   

6.
Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near‐native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4‐M23) was expressed in the X. laevis oocytes following their injection with AQP4‐M23 cRNA. AQP4‐M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4‐M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over‐expressed AQP4‐M23, the membranes from AQP4‐M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher‐order arrays of AQP4‐M23. In addition, but only infrequently, AQP4‐M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.  相似文献   

8.
AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 Å (AqpZ), 12 Å (AQP0), 13 Å (AQP2), and 20 Å (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and “blurs” structural details.Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ACV, auto-correlation value; AFM, atomic force microscopy; AQP0, aquaporin-0; AQP2, aquaporin-2; AqpZ, aquaporin-Z; bR, bacteriorhodopsin; CCV, cross-correlation value; CTF, contrast transfer function; DPR, differential phase residual; EM, electron microscopy; FRC, Fourier ring correlation; FSC, Fourier shell correlation; IS, internal symmetry; LH2, light-harvesting-complex 2; RMSD, root mean-square deviation; SD, standard deviation; SNR, signal/noise ratio; SSNR, spectral signal/noise ratio  相似文献   

9.
Aquaporin 0 (AQP0) is a lens-specific protein comprising more than 30% of lens membrane protein content and is a member of the aquaporin family. Water permeates through AQP0 much more slowly than other aquaporin family members, and other compounds, such as glycerol, also permeate AQP0. In the lens, ascorbic acid (AA) is found at high concentrations, protecting the lens from photochemical events such as photo-oxidation. The aim of the present study was to clarify the function of AQP0. Mouse fibroblast L-cells stably expressing AQP0 were established and incubated in medium containing AA, and intracellular AA levels were measured by high-performance liquid chromatography (HPLC) and 2,6-dichlorophenol-indophenol (DCPIP) analysis. Intracellular AA levels in AQP0-expressing cells quickly rose and reached saturation 10 min after incubation in medium containing 1000 μM AA. In contrast, AA levels in cells slowly decreased when AA was washed out from the medium. Cells overexpressing AQP0 increased the cellular uptake of AA in a time- and concentration-dependent manner. These data suggest that AA as well as water permeates AQP0.AQP0 expression on Xenopus oocyte membranes was achieved by the injection of AQP0 cRNA into oocytes that were incubated in medium containing AA. Intracellular AA levels were then measured by HPLC. AA uptake was demonstrated in the AQP0-expressing oocytes and was shown to quickly reach saturation. Intracellular AA concentration in oocytes increased in a time- and concentration-dependent manner.The data in the present study show that AA permeates AQP0, reveal the role of AQP0 in AA permeability ex vivo, and also indicate that there is a difference between the import and export of AA via AQP0. These findings suggest that AQP0 plays an important role in controlling lens AA content.  相似文献   

10.
Two classes of channel-forming proteins in the eye lens, the water channel aquaporin-0 (AQP-0) and the connexins Cx46 and Cx50, are preferentially located in different regions of lens plasma membranes ( [1] and [2]). Because these membranes contain high concentrations of cholesterol and sphingomyelin, as well as phospholipids such as phosphatidylcholine with unsaturated hydrocarbon chains, microdomains (rafts) form in these membranes. Here we test the hypothesis that sorting into lipid microdomains can play a role in the disposition of AQP-0 and the connexins in the plane of the membrane. For both crude membrane fractions and proteoliposomes composed of lens proteins in phosphatidylcholine/sphingomyelin/cholesterol lipid bilayers, detergent extraction experiments showed that the connexins were located primarily in detergent soluble membrane (DSM) fractions, whereas AQP-0 was found in both detergent resistant membrane and DSM fractions. Analysis of purified AQP-0 reconstituted in raft-containing bilayers showed that the microdomain location of AQP-0 depended on protein/lipid ratio. AQP-0 was located almost exclusively in DSMs at a 1:1200 AQP-0/lipid ratio, whereas ∼50% of the protein was sequestered into detergent resistant membranes at a 1:100 ratio, where freeze-fracture experiments show that AQP-0 oligomerizes (3). Consistent with these detergent extraction results, confocal microscopy images showed that AQP-0 was sequestered into raft microdomains in the 1:100 protein/lipid membranes. Taken together these results indicate that AQP-0 and connexins can be segregated in the membrane by protein-lipid interactions as modified by AQP-0 homo-oligomerization.  相似文献   

11.
Cataract Tohoku (Cat(Tohm)) is a dominant cataract mutation that leads to severe degeneration of lens fiber cells. Linkage analysis showed that the Cat(Tohm) mutation is located on mouse chromosome 10, close to the gene for aquaporin-0 (Aqp0), which encodes a membrane protein that is expressed specifically in lens fiber cells. Sequence analysis of Aqp0 revealed a 12-bp deletion without any change in the reading frame, which resulted in a deletion of four amino acids within the second transmembrane region of the AQP0 protein. Targeted expression of the mutated Aqp0 caused lens opacity in transgenic mice, the pathological severity of which depended on the expression level of the transgene. The mutated AQP0 protein was localized to the intracellular and perinuclear spaces rather than to the plasma membranes of the lens fiber cells. The cataract phenotype of Cat(Tohm) is caused by a gain-of-function mutation in the mutated AQP0 protein and not by a loss-of-function mutation.  相似文献   

12.
Gap junction structures were assembled in vitro from octyl-beta-D-glucopyranoside-solubilized components of lens fiber cell membranes. Individual pore structures (connexons), short double-membrane structures, and other amorphous material were evident in the solubilized mixture. Following the removal of the detergent by dialysis, these connexons associated to form single- and double-layered, two-dimensional hexagonal arrays (unit cell size a = b = 8.5 nm). The formation of larger arrays was dependent on the lipid-to-protein ratio and the presence of Mg2+ ions. Crystallographic analysis of electron micrographs revealed that lens junctional connexons consisted of six subunits surrounding a stain-filled channel. Upon further detergent treatment, in vitro assembled gap junctions were insoluble and formed three-dimensional stacks while other components were solubilized. SDS-PAGE and mass data from scanning transmission electron microscopy strongly suggest that a 38-kDa polypeptide, which is a processed form of the lens specific gap junction protein MP70, is a major component of the arrays. The in vitro assembly of gap junctions opens new avenues for the structural analysis of gap junctions and for the study of the intermolecular interactions of connexons during junctional assembly.  相似文献   

13.
The formation of hepatic bile requires that water be transported across liver epithelia. Rat hepatocytes express three aquaporins (AQPs): AQP8, AQP9, and AQP0. Recognizing that cholesterol and sphingolipids are thought to promote the assembly of proteins into specialized membrane microdomains, we hypothesized that canalicular bile secretion involves the trafficking of vesicles to and from localized lipid-enriched microdomains in the canalicular plasma membrane. Hepatocyte plasma membranes were sonicated in Triton and centrifuged overnight on a sucrose gradient to yield a Triton-soluble pellet and a Triton-insoluble, sphingolipid-enriched microdomain fraction at the 5%/30% sucrose interface. The detergent-insoluble portion of the hepatocyte plasma membrane was enriched in alkaline phosphatase (a microdomain-positive marker) and devoid of amino-peptidase N (a microdomain-negative marker), enriched in caveolin, both AQP8 and AQP9, but negative for clathrin. The microdomain fractions contained chloride-bicarbonate anion exchanger isoform 2 and multidrug resistance-associated protein 2. Exposure of isolated hepatocytes to glucagon increased the expression of AQP8 but not AQP9 in the microdomain fractions. Sphingolipid analysis of the insoluble fraction showed the predominant species to be sphingomyelin. These data support the presence of sphingolipid-enriched microdomains of the hepatocyte membrane that represent potential localized target areas for the clustering of AQPs and functionally related proteins involved in canalicular bile secretion.  相似文献   

14.
Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0+/−) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0+//AQP1+/) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (Pf) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA, possibly due to alteration in RING. To our knowledge, this is the first report identifying the role of AQP0 in RING development to ward off lens SA during focusing.  相似文献   

15.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (Cat Fr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

16.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (CatFr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

17.
Gap junction structures were assembled in vitro from octyl-β- -glucopyranoside-solubilized components of lens fiber cell membranes. Individual pore structures (connexons), short double-membrane structures, and other amorphous material were evident in the solubilized mixture. Following the removal of the detergent by dialysis, these connexons associated to form single- and double-layered, two-dimensional hexagonal arrays (unit cell size a = B = 8.5 nm). The formation of larger arrays was dependent on the lipid-to-protein ratio and the presence of Mg2+ ions. Crystallographic analysis of electron micrographs revealed that lens junctional connexons consisted of six subunits surrounding a stain-filled channel. Upon further detergent treatment, in vitro assembled gap junctions were insoluble and formed three-dimensional stacks while other components were solubilized. SDS-PAGE and mass data from scanning transmission electron microscopy strongly suggest that a 38-kDa polypeptide, which is a processed form of the lens specific gap junction protein MP70, is a major component of the arrays. The in vitro assembly of gap junctions opens new avenues for the structural analysis of gap junctions and for the study of the intermolecular interactions of connexons during junctional assembly.  相似文献   

18.
Aquaporin-0 (AQP0) is the major intrinsic protein of lens fiber cells and the founder member of the water channel gene family. Here we show that disruption of the AQP0 gene by an early transposon (ETn) element results in expression of a chimeric protein, comprised of approximately 75% AQP0 and approximately 25% ETn long terminal repeat (LTR) sequence, in the cataract Fraser (CatFr) mouse lens. Immunoblot analysis showed that mutant AQP0-LTR was similar in mass to wild-type AQP0. However, immunofluorescence microscopy revealed that AQP0-LTR was localized to intracellular membranes rather than to plasma membranes of lens fiber cells. Heterozygous CatFr lenses were similar in size to wild-type but displayed abnormal regions of translucence and light scattering. Scanning electron microscopy further revealed that mature fiber cells within the core of the heterozygous CatFr lens failed to stratify into uniform, concentric growth shells, suggesting that the AQP0 water channel facilitates the development of the unique cellular architecture of the crystalline lens.  相似文献   

19.

Background

Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions.

Methods

The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2–6 (AQP0-N-del-2-6), AA235–263 (AQP0-1-234), AA239–263 (AQP0-1-238), AA244–263 (AQP0-1-243), AA247–263 (AQP0-1-246), AA250–263 (AQP0-1-249) and AA260–263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays.

Results

AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263).

Conclusions

Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens.

General significance

Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.  相似文献   

20.
Aquaporin-0 (AQP0) is the major membrane protein in vertebrate eye lenses. It has been proposed that AQP0 tetramers mediate contact between membranes of adjacent lens fiber cells, which would be consistent with the extraordinarily narrow inter-cellular spacing. We have obtained 3D crystals of recombinant bovine AQP0 that diffract to 7.0 A resolution. The crystal packing was determined by molecular replacement and shows that, within the cubic lattice, AQP0 tetramers are associated head-to-head along their 4-fold axes. Oligomeric states larger than the tetramer were also observed in solution by native gel electrophoresis and analytical ultracentrifugation methods. In the crystals, there are no direct contacts between octamers, and it can thus be inferred that crystalline order is mediated solely by the detergent belts surrounding the membrane protein. Across the tetramer-tetramer interface, extracellular loops A and C interdigitate at the center and the perimeter of the octamer, respectively. The octamer structure is compared with that of the recently determined structure of truncated ovine AQP0 derived from electron diffraction of 2D crystals. Intriguingly, also in these crystals, octamers are observed, but with significantly different relative tetramer-tetramer orientations. The interactions observed in the loosely packed 3D crystals reported here may in fact represent an in vivo association mode between AQP0 tetramers from juxtaposed membranes in the eye lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号