共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the functional analysis of human Regulator of Ribosome Synthesis 1 (RRS1) protein during mitosis. We demonstrate that RRS1 localizes in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. RNA interference experiments revealed that RRS1-depleted cells show abnormalities in chromosome alignment and spindle organization, which result in mitotic delay. RRS1 knockdown also perturbs the centromeric localization of Shugoshin 1 and results in premature separation of sister chromatids. Our results suggest that a nucleolar protein RRS1 contributes to chromosome congression. 相似文献
2.
3.
Diacylglycerol kinase (DGK)gamma was shown to act as an upstream suppressor of Rac1. Here we report that, in COS7 cells stimulated with epidermal growth factor (EGF), DGKgamma specifically interacts and co-localizes at the plasma membrane with beta2-chimaerin, a GTPase-activating protein (GAP) for Rac. Moreover, DGKgamma enhanced EGF-dependent translocation of beta2-chimaerin to the plasma membrane. Interestingly, DGKgamma markedly augmented EGF-dependent GAP activity of beta2-chimaerin through its catalytic action. These results indicate that DGKgamma is a novel regulator of beta2-chimaerin, and thus suggest that beta2-chimaerin is an effector molecule, linking DGKgamma functionally with Rac1. 相似文献
4.
M. Skrzypski M. Kakkassery S. Mergler C. Grötzinger N. Khajavi M. Sassek D. Szczepankiewicz B. Wiedenmann K.W. Nowak M.Z. Strowski 《FEBS letters》2013
Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca2+- and Mg2+-permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca2+ and insulin secretion in INS-1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca2+ and enhanced glucose-stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca2+]i and insulin secretion in INS-1E cells. 相似文献
5.
Xue Wang Hua-Ying Xia Hong-You Qin Xiang-Ping Kang Hai-Yan Hu Jing Zheng Jia-Ye Jiang Ling-Ai Yao Yan-Wu Xu Tong Zhang Xue-Li Zhang 《Journal of cellular biochemistry》2019,120(4):5085-5096
20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases. 相似文献
6.
Chun-Liang Tung Hsien-Chun Chiu Yi-Jun Jian Yun-Ting Jian Chien-Yu Chen Jhan-Jhang Syu Ting-Yu Wo Yi-Jhen Huang Sheng-Chieh Tseng Yun-Wei Lin 《Experimental cell research》2014
Elevated heat shock protein 90 (Hsp90) expression has been linked to poor prognosis in patients with non-small cell lung cancer (NSCLC). The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against NSCLC. However, the efficacy of the combination of pemtrexed and Hsp90 inhibitor to prolong the survival of patients with NSCLC still remains unclear. Human MutS homolog 2 (MSH2), a crucial element of the highly conserved DNA mismatch repair system, and defects or polymorphisms of MSH2 have been found in lung cancer. In this study, we evaluated the effects of pemetrexed on NSCLC cell lines (H520 and H1703) and found that treatment with this drug at 20–50 µM increased the MSH2 mRNA and protein levels in a MKK3/6–p38 MAPK signal activation-dependent manner. Furthermore, the knockdown of MSH2 expression by transfection with small interfering RNA of MSH2 or the blockage of p38 MAPK activation by SB202190 enhanced the cytotoxicity of pemetrexed. Combining the drug treatment with an Hsp90 inhibitor resulted in an enhanced pemetrexed-induced cytotoxic effect, accompanied with the reduction of MSH2 protein and mRNA levels. The expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored the MSH2 protein levels and cell survival in NSCLC cells co-treated with pemetrexed and Hsp90 inhibitor. In this study, we have demonstrated that down-regulation of the MKK3/6–p38 MAPK signal with the subsequent reduction of MSH2 enhanced the cytotoxic effect of pemetrexed in H520 and H1703 cells. The results suggest a potential future benefit of combining pemetrexed and the Hsp90 inhibitor to treat lung cancer. 相似文献
7.
8.
Chou YH Flitney FW Chang L Mendez M Grin B Goldman RD 《Experimental cell research》2007,313(10):2236-2243
Intermediate filament (IF) proteins exist in multiple structural forms within cells including mature IF, short filaments or 'squiggles', and non-filamentous precursors called particles. These forms are interconvertible and their relative abundance is IF type, cell type- and cell cycle stage-dependent. These structures are often associated with molecular motors, such as kinesin and dynein, and are therefore capable of translocating through the cytoplasm along microtubules. The assembly of mature IF from their precursor particles is also coupled to translation. These dynamic properties of IF provide mechanisms for regulating their reorganization and assembly in response to the functional requirements of cells. The recent findings that IF and their precursors are frequently associated with signaling molecules have revealed new functions for IF beyond their more traditional roles as mechanical integrators of cells and tissues. 相似文献
9.
We applied the small interfering RNA (siRNA) technique and over-expression of a dominant-negative mutant to evaluate the role of SNAP-23, a non-neuronal isoform of SNAP-25, in constitutive exocytosis from HeLa cells. Although the protein level of SNAP-23 was reduced to less than 10% of the control value by siRNA directed against SNAP-23, exocytosis of SEAP (secreted alkaline phosphatase) was normal. Double knockdown of SNAP-23 and syntaxin-4 also failed to inhibit the secretion. Furthermore, over-expression of deltaC8-SNAP-23, a dominant-negative mutant of SNAP-23, did not abrogate SEAP secretion. These results suggest that SNAP-23 is not essential for constitutive exocytosis of SEAP. 相似文献
10.
11.
Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways 总被引:1,自引:0,他引:1
Cliona M. Stapleton Yong-Sik Kim Reynold A. Panettieri Jr. 《Experimental cell research》2010,316(4):507-516
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies. 相似文献
12.
Takayuki Kawaguchi Hajime Kanda Sanshiro Tateya Masato Kasuga 《Biochemical and biophysical research communications》2010,391(3):1336-1341
SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event. 相似文献
13.
Stabilin-2 was recently identified as a novel receptor for membrane phosphatidylserine of apoptotic cells. To identify proteins that were candidates for stabilin-2 cytoplasmic domain binding, we screened a human spleen cDNA library using the yeast two-hybrid system. We found that thymosin beta4 interacts with the stabilin-2 cytoplasmic domain and is co-localized with stabilin-2 at the phagocytic cup. Knockdown of thymosin beta4 significantly decreased the phagocytic activity of stabilin-2, whereas overexpression of thymosin beta4 increased this activity. Additionally, amino acids 2504-2514 of stabilin-2 cytoplasmic domain were found to be responsible for the interaction with thymosin beta4. Taken together, these results suggest that thymosin beta4 is a downstream molecule of stabilin-2 that plays a role in stabilin-2-mediated cell corpse clearance. 相似文献
14.
In recent years, attention has been focused on the anti-cancer properties of pure components, an important role in the prevention of disease. Andrographolide (Andro), the major constituent of Andrographis paniculata (Burm. F.) Nees plant, is implicated towards its pharmacological activity. To investigate the mechanism basis for the anti-tumor properties of Andro, Andro was used to examine its effect on cell-cycle progression in human colorectal carcinoma Lovo cells. The data from cell growth experiment showed that Andro exhibited the anti-proliferation effect on Lovo cells in a time- and dose-dependent manner. This event was accompanied the arrest of the cells at the G1-S phase by Andro at the tested concentrations of 0-30 microM. Cellular uptake of Andro and Andro was confirmed by capillary electrophoresis analysis and the intracellular accumulation of Andro (0.61+/-0.07 microM/mg protein) was observed when treatment of Lovo cells with Andro for 12h. In addition, an accumulation of the cells in G1 phase (15% increase for 10 microM of Andro) was observed as well as by the association with a marked decrease in the protein expression of Cyclin A, Cyclin D1, Cdk2 and Cdk4. Andro also inducted the content of Cdk inhibitor p21 and p16, and the phosphorylation of p53. Further immunoprecipitation studies found that, in response to the treatment, the formation of Cyclin D1/Cdk4 and Cyclin A/Cdk2 complexes had declined, preventing the phosphorylation of Rb and the subsequent dissociation of Rb/E2F complex. These results suggested Andro can inhibit Lovo cell growth by G1-S phase arrest, and was exerted by inducing the expression of p53, p21 and p16 that, in turn, repressed the activity of Cyclin D1/Cdk4 and/or Cyclin A/Cdk2, as well as Rb phosphorylation. 相似文献
15.
16.
Zinc accumulation in the lumen of cytoplasmic vesicles is one of the mechanisms by which cells can store significant amounts of this essential but potentially toxic biometal. Previous studies had demonstrated reduced vesicular zinc levels in fibroblasts from mutant mice deficient in adaptor protein 3 (AP-3), a complex involved in protein trafficking to late endosomes and lysosomes. We have observed a similar phenotype in the human fibroblastoid cell line, M1, upon small interference RNA-mediated AP-3 knockdown. A survey of the expression and localization of zinc transporter (ZnT) family members identified ZnT2, ZnT3, and ZnT4 as likely mediators of vesicular zinc accumulation in M1 cells. Expression of green fluorescence protein (GFP)-tagged ZnT2 and ZnT3 promoted accumulation of vesicular zinc as visualized using the indicator zinquin. Moreover, GFP-ZnT2 overexpression elicited a significant accumulation of zinc within mature lysosomes, which in untransfected M1 cells contained little or no chelatable zinc, and restored the zinc storage capability of AP-3-deficient cells. These results suggest that ZnT2 can facilitate vesicular zinc accumulation independently of AP-3 function, and validate the M1 fibroblastoid line as a human cell culture system amenable to the study of vesicular zinc regulation using techniques compatible with functional genomic approaches. 相似文献
17.
Ribonucleic nucleic acid recognition by Toll-like receptors (TLRs) induces innate immune responses. However, no comprehensive analysis of gene expression in human blood cells in response to unmodified and 2'-modified immunostimulatory RNAs has been reported. Using oligonucleotide microarrays, we show that around 400 genes were significantly (P<0.001) altered in peripheral blood mononuclear cells (PBMC) in response to either single-stranded (ss) or double-stranded (ds) small interfering RNAs (siRNAs). Most of the upregulated genes encode proteins involved in innate and adaptive immune responses, including proinflammatory cytokines, interferons, chemokines and chemokine receptors. Genes encoding proteins involved in lymphocyte activation (e.g. CD80, CD40, and CD69) and in regulation of the immune responses (e.g. SOCS proteins) were upregulated. Also, genes encoding for antiviral proteins (Mx1, Mx2, TRIM proteins), and interferon regulatory factors (e.g. IRF7) were upregulated. Around 90% of the genes (140 out of 160) affected by R-848, a specific ligand for TLR7 and TLR8, were also affected by ss siRNAs or ds siRNAs, indicating that the signaling pathways activated by R-848 are also activated by immunostimulatory siRNAs. In addition to immunoactivation via TLRs, ss siRNAs and ds siRNAs induced TLR-independent gene alterations. Surprisingly, replacement of only uridine bases with either 2'-fluoro or 2'-O-methyl modified counterparts abrogated all the observed bystander effects. Collectively, these microarray data offer for the first time an insight into human PMBC response to immunostimulatory RNAs such as ss siRNAs and ds siRNAs. The data should help to define strategies to either enhance or avoid the non-specific effects of siRNAs in order to develop safe therapeutics. 相似文献
18.
Sordet O Larochelle S Nicolas E Stevens EV Zhang C Shokat KM Fisher RP Pommier Y 《Journal of molecular biology》2008,381(3):540-549
19.
Human Tid-1 (hTid-1) is a DnaJ chaperone protein with homology to the Drosophila tumor suppressor Tid56. We report the first case of a tumor-associated mutation at the human TID1 locus, which was identified in the SF767 glioma cell line giving rise to aberrantly high levels of a hTid-1(L) mutant variant. In this study, we set out to determine whether this change in hTid-1 status influences the response of glioma cells to adenoviral (Ad)-mediated delivery of the two major isoforms of TID1, hTid-1(L) and hTid-1(S). Ad-hTid-1(S) induced apoptosis in hTid-1 mutant SF767 cells, while causing growth arrest in wild-type hTid-1-expressing U373 and U87 cells. By contrast, Ad-hTid-1(L) infection had no apparent effect on glioma cell growth. The apoptosis induced by hTid-1(S) was accompanied by mitochondrial cytochrome C release and caspase activation and blocked by stable overexpression of Bcl-X(L). Our findings suggest that the status of hTid-1 in gliomas may contribute to their susceptibility to cell death triggers. 相似文献
20.
Engagement of membrane Ig (mIg) on WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells, results in growth arrest and subsequent apoptosis. Of the several dozen genes upregulated greater than two-fold by anti-IgM treatment through DNA microarray analysis, we focused on B cell translocation gene 1 (Btg1) and Btg2, member of Btg/Tob family of proteins. WEHI-231 cells were infected with the Btg1/EGFP or Btg2/EGFP retroviral vectors, and those expressing either Btg1 or Btg2 accumulated in G1 phase at significantly higher proportions than that seen for cells expressing control vector. Btg1 or Btg2 bound to protein arginine methyltransferase (PRMT) 1 via the box C region, an interaction required for anti-IgM-induced growth inhibition. The arginine methyltransferase inhibitor AdOx partially abrogated growth inhibition induced by Btg1, Btg2, or anti-IgM. The Btg1- or Btg2-induced growth inhibition was also abrogated in PRMT1-deficient cells via introduction of small interference RNA. In addition, we observed anti-IgM-induced arginine methylation of two proteins, a 28-kDa and a 36-kDa protein. Methylation, detected by a monoclonal antibody specific for asymmetric, but not symmetric methyl residues, was observed as early as 1 h-2 h after stimulation and was sustained for up to 24 h. The anti-IgM-induced p36 arginine methylation was abrogated in the PRMT1-deficient cells, suggesting that PRMT1 induces p36 methylation. Together, these results suggest that anti-IgM-induced growth inhibition is mediated via upregulation of Btg1 and Btg2, resulting in the activation of arginine methyltransferase activity and culminating in growth inhibition of WEHI-231 cells. 相似文献