首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High mobility group B (HMGB) proteins contain two HMG box domains known to bind without sequence specificity into the DNA minor groove, slightly intercalating between basepairs and producing a strong bend in the DNA backbone. We use optical tweezers to measure the forces required to stretch single DNA molecules. Parameters describing DNA flexibility, including contour length and persistence length, are revealed. In the presence of nanomolar concentrations of isolated HMG box A from HMGB2, DNA shows a decrease in its persistence length, where the protein induces an average DNA bend angle of 114 +/- 21 degrees for 50 mM Na+, and 87 +/- 9 degrees for 100 mM Na+. The DNA contour length increases from 0.341 +/- 0.003 to 0.397 +/- 0.012 nm per basepair, independent of salt concentration. In 50 mM Na+, the protein does not unbind even at high DNA extension, whereas in 100 mM Na+, the protein appears to unbind only below concentrations of 2 nM. These observations support a flexible hinge model for noncooperative HMG binding at low protein concentrations. However, at higher protein concentrations, a cooperative filament mode is observed instead of the hinge binding. This mode may be uniquely characterized by this high-force optical tweezers experiment.  相似文献   

2.
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.  相似文献   

3.
高迁移率族蛋白与真核基因表达调控   总被引:12,自引:0,他引:12       下载免费PDF全文
高迁移率族蛋白 (high mobility group protein , HMG) 是一系列的染色质相关蛋白,广泛存在于真核生物细胞中,含量丰富,因其在聚丙烯酰胺凝胶电泳中的高迁移率而得名 . HMG 蛋白家族可分为 HMGB 、 HMGA 和 HMGN 三类亚家族,各亚家族有其特征的结构域,这些结构域介导了 HMG 和 DNA 或染色质相关区域的相互作用 . 现已发现这些蛋白质具有多种重要生物学功能,其中几乎所有 HMG 都可以通过修饰、弯曲或改变染色质 /DNA 的结构,促进各种蛋白质因子形成大分子复合物来调节基因转录 .  相似文献   

4.
HMO1 proteins are abundant Saccharomyces cerevisiae (yeast) High Mobility Group Box (HMGB) protein (Kamau, Bauerla & Grove, 2004). HMGB proteins are nuclear proteins which are known to be architectural proteins (Travers, 2003). HMO1 possesses two HMGB box domains. It has been reported that double box HMGB proteins induce strong bends upon binding to DNA. It is also believed that they play an essential role in reorganizing chromatin and, therefore, are likely to be involved in gene activation. To characterize DNA binding we combine single molecule stretching experiments and AFM imaging of HMO1 proteins bound to DNA. By stretching DNA bound to HMO1, we determine the dissociation constant, measure protein induced average DNA bending angles, and determine the rate at which torsional constraint of the DNA is released by the protein. To further investigate the local nature of the binding, AFM images of HMO1-DNA complexes are imaged, and we probe the behavior of these complexes as a function of protein concentration. The results show that at lower concentrations, HMO1 preferentially binds to the ends of the double helix and links to the separate DNA strands. At higher concentrations HMO1 induces formation of a complex network that reorganizes DNA. Although HMG nuclear proteins are under intense investigation, little is known about HMO1. Our studies suggest that HMO1 proteins may facilitate interactions between multiple DNA molecules.  相似文献   

5.
6.
HMGB proteins are abundant, non-histone proteins in eukaryotic chromatin. HMGB proteins contain one or two conserved “HMG boxes” and can be sequence-specific or nonspecific in their DNA binding. HMGB proteins cause strong DNA bending and bind preferentially to deformed DNAs. We wish to understand how HMGB proteins increase the apparent flexibility of non-distorted B-form DNA. We test the hypothesis that HMGB proteins bind transiently, creating an ensemble of distorted DNAs with rapidly interconverting conformations. We show that binding of B-form DNA by HMGB proteins is both weak and transient under conditions where DNA cyclization is strongly enhanced. We also detect novel complexes in which HMGB proteins simultaneously bind more than one DNA duplex.  相似文献   

7.
8.
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently   总被引:4,自引:0,他引:4  
We analyzed the DNA-binding and DNA-bending properties of recombinant HMGB1 proteins based on a rice HMGB1 cDNA. Electrophoretic mobility shift assay demonstrated that rice HMGB1 can bind synthetic four-way junction (4H) DNA and DNA minicircles efficiently but the binding to 4H can be completed out by HMGA and histone H1. Conformational changes were detected by circular dichroism analysis with 4H DNA bound to various concentrations of HMGB1 or its truncated forms. T4 ligase-mediated circularization assays with short DNA fragments of 123 bp showed that the protein is capable of increasing DNA flexibility. The 123-bp DNA formed closed circular monomers efficiently in its presence, similar to that in an earlier study on maize HMG. Additionally, our results show for the first time that the basic N-terminal domain enhances the affinity of the plant HMGB1 protein for 4H DNA, while the acidic C-terminal domain has the converse effects.  相似文献   

9.
High mobility group (HMG) proteins are usually considered ubiquitous components of the eukaryotic chromatin. Using HMG gene promoter-GUS reporter gene fusions we have examined the expression of the reporter gene in transgenic Arabidopsis plants. These experiments have revealed that the different HMGA and HMGB promoters display overlapping patterns of activity, but they also show tissue- and developmental stage-specific differences. Moreover, leader introns that are present in some of the HMGB genes can modulate reporter gene expression. The differential HMG gene expression supports the view that the various HMG proteins serve partially different architectural functions in plant chromatin.  相似文献   

10.
Understanding and predicting the mechanical properties of protein/DNA complexes are challenging problems in biophysics. Certain architectural proteins bind DNA without sequence specificity and strongly distort the double helix. These proteins rapidly bind and unbind, seemingly enhancing the flexibility of DNA as measured by cyclization kinetics. The ability of architectural proteins to overcome DNA stiffness has important biological consequences, but the detailed mechanism of apparent DNA flexibility enhancement by these proteins has not been clear. Here, we apply a novel Monte Carlo approach that incorporates the precise effects of protein on DNA structure to interpret new experimental data for the bacterial histone-like HU protein and two eukaryotic high-mobility group class B (HMGB) proteins binding to ∼ 200-bp DNA molecules. These data (experimental measurement of protein-induced increase in DNA cyclization) are compared with simulated cyclization propensities to deduce the global structure and binding characteristics of the closed protein/DNA assemblies. The simulations account for all observed (chain length and concentration dependent) effects of protein on DNA behavior, including how the experimental cyclization maxima, observed at DNA lengths that are not an integral helical repeat, reflect the deformation of DNA by the architectural proteins and how random DNA binding by different proteins enhances DNA cyclization to different levels. This combination of experiment and simulation provides a powerful new approach to resolve a long-standing problem in the biophysics of protein/DNA interactions.  相似文献   

11.
12.
We have constructed IgG1-Fc scaffolds with increased thermal stability by directed evolution and yeast surface display. As a basis a new selection strategy that allowed the application of yeast surface display for screening of stabilizing mutations in proteins of already high intrinsic thermal stability and Tm-values up to 85 °C was developed. Besides library construction by error prone PCR, strong heat stress at 79 °C for 10 min and screening for well-folded proteins by FACS, sorting rounds had to include an efficient plasmid DNA isolation step for amplification and further transfection. We describe the successful application of this experimental setup for selection of 17 single, double and triple IgG1-Fc variants of increased thermal stability after four selection rounds. The recombinantly produced homodimeric proteins showed a wild-type-like elution profile in size exclusion chromatography as well as content of secondary structures. Moreover, the kinetics of binding of FcRn, CD16a and Protein A to the engineered Fc-molecules was very similar to the wild-type protein. These data clearly demonstrate the importance and efficacy of the presented strategy for selection of stabilizing mutations in proteins of high intrinsic stability within reasonable time.  相似文献   

13.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   

14.
V A Shepelev 《FEBS letters》1984,172(2):172-176
Binding constants have been measured for the interaction of the protein HMG1 with native DNA, denatured DNA and a number of polynucleotides at near-physiological ionic strengths, using gel filtration and thermal denaturation. The interaction of HMG1 with DNA is shown to be noncooperative and reversible. Nucleic acids form the following series in order of increasing binding constants: poly(U) integral of poly(A) less than poly(dA) less than dsDNA integral of poly(dA) X poly(dT) integral of poly(dG) X poly(dC) much less than poly[d(A-T]) integral of ssDNA.  相似文献   

15.
Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597°) in one plane and very little curvature (10°) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30° per helical turn throughout most of the structure but that there are two sharper kinks of 50° at ± 2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500° of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50° kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30° curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome.  相似文献   

16.
17.
18.
High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling.  相似文献   

19.
Kim K  Han JS  Kim HA  Lee M 《Biotechnology letters》2008,30(8):1331-1337
High mobility group box 1 (HMGB1) is an abundant nuclear protein that binds to double-stranded DNA. HMGB1 is composed of high mobility (HMG) box A, box B, and C-terminal acidic regions. In this study, a recombinant TAT linked HMGB1 box A (rTAT-HMGB1A) peptide was expressed, purified, and characterized as a carrier of nucleic acids. The HMGB1A cDNA was amplified by PCR, and cloned into the pET21a expression vector with the TAT domain located at the N-terminus. The rTAT-HMGB1A peptide was overexpressed and purified using Nickel affinity chromatography. A recombinant HMGB1A (rHMGB1A) peptide without the TAT domain was also overexpressed and purified as a control. In gel retardation assays, both the rHMGB1A and rTAT-HMGB1A peptides formed complexes with DNA equally well. However, transfection assays showed that the rTAT-HMGB1A peptide had a higher gene transfer efficiency than rHMGB1A. Finally, rTAT-HMGB1A had no cytotoxicity to HEK 293 cells suggesting that rTAT-HMGB1A may be useful as a non-toxic gene delivery carrier.  相似文献   

20.
Escherichia coli HUαβ, a major nucleoid-associated protein, organizes chromosomal DNA and facilitates numerous DNA transactions. Using isothermal titration calorimetry, fluorescence resonance energy transfer and a series of DNA lengths (8 bp, 15 bp, 34 bp, 38 bp and 160 bp) we established that HUαβ interacts with duplex DNA using three different nonspecific binding modes. Both the HU to DNA molar ratio ([HU]/[DNA]) and DNA length dictate the dominant HU binding mode. On sufficiently long DNA (≥ 34 bp), at low [HU]/[DNA], HU populates a noncooperative 34 bp binding mode with a binding constant of 2.1 ± 0.4 × 106 M− 1, and a binding enthalpy of + 7.7 ± 0.6 kcal/mol at 15 °C and 0.15 M Na+. With increasing [HU]/[DNA], HU bound in the noncooperative 34 bp mode progressively converts to two cooperative (ω∼20) modes with site sizes of 10 bp and 6 bp. These latter modes exhibit smaller binding constants (1.1 ± 0.2 × 105 M− 1 for the 10 bp mode, 3.5 ± 1.4 × 104 M− 1 for the 6 bp mode) and binding enthalpies (4.2 ± 0.3 kcal/mol for the 10 bp mode, − 1.6 ± 0.3 kcal/mol for the 6 bp mode). As DNA length increases to 34 bp or more at low [HU]/[DNA], the small modes are replaced by the 34 bp binding mode. Fluorescence resonance energy transfer data demonstrate that the 34 bp mode bends DNA by 143 ± 6° whereas the 6 bp and 10 bp modes do not. The model proposed in this study provides a novel quantitative and comprehensive framework for reconciling previous structural and solution studies of HU, including single molecule (force extension measurement), fluorescence, and electrophoretic gel mobility-shift assays. In particular, it explains how HU condenses or extends DNA depending on the relative concentrations of HU and DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号