首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Aspergillus flavus, a fungal pathogen of animals and both wild and economically important plants, is most recognized for producing aflatoxin, a cancer‐causing secondary metabolite that contaminates food and animal feed globally. Aspergillus flavus has two self/nonself recognition systems, a sexual compatibility system and a vegetative incompatibility system, and both play a role in directing gene flow in populations. Aspergillus flavus reproduces clonally in wild and agricultural settings, but whether a cryptic sexual stage exists in nature is currently unknown. We investigated the distribution of genetic variation in 243 samples collected over 4 years from three common vegetative compatibility groups (VCGs) in Arizona and Texas from cotton using 24 microsatellite loci and the mating type locus (MAT) to assess population structure and potential gene flow among A. flavus VCGs in sympatric populations. All isolates within a VCG had the same mating type with OD02 having MAT1‐2 and both CG136 and MR17 having MAT1‐1. Our results support the hypothesis that these three A. flavus VCGs are genetically isolated. We found high levels of genetic differentiation and no evidence of gene flow between VCGs, including VCGs of opposite mating‐type. Our results suggest that these VCGs diverged before domestication of agricultural hosts (>10 000 yr bp ).  相似文献   

4.
Sexual development in the filamentous model ascomycete Trichoderma reesei (syn. Hypocrea jecorina) was described only a few years ago. In this study, we show a novel role for VELVET in fungi, which links light response, development and secondary metabolism. Vel1 is required for mating in darkness, normal growth and conidiation. In light, vel1 was dispensable for male fertility but essential for female fertility in both mating types. VEL1 impacted regulation of the pheromone system (hpr1, hpr2, hpp1, ppg1) in a mating type‐dependent manner and depending on the mating partner of a given strain. These partner effects only occurred for hpp1 and hpr2, the pheromone precursor and receptor genes associated with the MAT1‐2 mating type and for the mating type gene mat1‐2‐1. Analysis of secondary metabolite patterns secreted by wild type and mutants under asexual and sexual conditions revealed that even in the wild type, the patterns change upon encounter of a mating partner, with again distinct differences for wild type and vel1 mutants. Hence, T. reesei applies a language of pheromones and secondary metabolites to communicate with mating partners and that this communication is at least in part mediated by VEL1.  相似文献   

5.
The 51 isolates, the causing agents of maize eyespot, were identified as Kabatiella zeae with morphological and molecular methods. The structure of the MAT locus in K. zeae JLMHK‐9 strain contains MAT1‐1 and MAT1‐2 genes which are transcribed in opposite directions, DNA lyase gene (APN2) which is adjacent to the 3′ flanking region of MAT1‐2‐1 gene and a pleckstrin homology domain (PH) which is adjacent to the 3′ flanking region of MAT1‐1‐1 gene. The specific primers are used to identify the mating types of K. zeae isolates collected from six provinces in China, and our findings speculate that K. zeae is a homothallic species.  相似文献   

6.
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.  相似文献   

7.
The chemical composition and pharmacological effects of Cordyceps militaris are similar to those of Cordyceps sinensis, with the former undergoing greater development and utilization. Strain degeneration is a common phenomenon that occurs with high frequency during the subculturing of C. militaris, however, and the mechanism underlying strain degeneration remains unclear. In this study, we used touch‐down PCR to compare the ITS1 + 5.8S + ITS2, 18S, 28S and mating‐type (MAT) regions sequence of wild‐type and degenerated strains of C. militaris. We also used quantitative real‐time PCR to analyze expression levels of the CmMAT gene. Sequence analysis showed that the ITS1 + 5.8S + ITS2 and 28S regions of degenerated and wild‐type strains were completely identical, the 18S region of the degenerated strain contained seven single‐base mutations, including six base substitutions and one single‐base insertion. Compared with the wild‐type strain, the degenerated strain contained a deletion of the MAT1–2‐1 region, three base substitutions in the MAT1–1‐1 region, and a base substitution in the MAT1–1‐2 region that causes a glycine‐to‐valine amino acid substitution. Quantitative real‐time PCR analysis detected no CmMAT1–2‐1 gene expression in the degenerated strain, confirming the deletion of the CmMAT1–2‐1 gene. Expression levels of the CmMAT1–1‐1 and CmMAT1–1‐2 genes were significantly down‐regulated to only 7.5 % and 4.4 %, respectively, that of the wild‐type strain. These results indicate that 18S and MAT region mutations, as well as down‐regulated of CmMAT gene expression levels, may play important roles in C. militaris degeneration. This study provides a theoretical basis for further elucidation of the molecular mechanisms of C. militaris degeneration.  相似文献   

8.
Blastomyces dermatitidis is a dimorphic fungal pathogen that primarily causes blastomycosis in the midwestern and northern United States and Canada. While the genes controlling sexual development have been known for a long time, the genes controlling sexual reproduction of B. dermatitidis (teleomorph, Ajellomyces dermatitidis) are unknown. We identified the mating-type (MAT) locus in the B. dermatitidis genome by comparative genomic approaches. The B. dermatitidis MAT locus resembles those of other dimorphic fungi, containing either an alpha-box (MAT1-1) or an HMG domain (MAT1-2) gene linked to the APN2, SLA2, and COX13 genes. However, in some strains of B. dermatitidis, the MAT locus harbors transposable elements (TEs) that make it unusually large compared to the MAT locus of other dimorphic fungi. Based on the MAT locus sequences of B. dermatitidis, we designed specific primers for PCR determination of the mating type. Two B. dermatitidis isolates of opposite mating types were cocultured on mating medium. Immature sexual structures were observed starting at 3 weeks of coculture, with coiled-hyphae-containing cleistothecia developing over the next 3 to 6 weeks. Genetic recombination was detected in potential progeny by mating-type determination, PCR-restriction fragment length polymorphism (PCR-RFLP), and random amplification of polymorphic DNA (RAPD) analyses, suggesting that a meiotic sexual cycle might have been completed. The F1 progeny were sexually fertile when tested with strains of the opposite mating type. Our studies provide a model for the evolution of the MAT locus in the dimorphic and closely related fungi and open the door to classic genetic analysis and studies on the possible roles of mating and mating type in infection and virulence.  相似文献   

9.
Regions of the chromosomes determining mating compatibility in some fungi, including Microbotryum lychnidis‐dioicae and Neurospora tetrasperma, exhibit suppressed recombination similar to sex chromosomes in plants and animals, and recent studies have sought to apply basic theories of sex chromosome evolution to fungi. A phylogeny of the MTL1 locus in Microbotryum indicates that it has become part of the nonrecombining regions of the mating‐type chromosomes in multiple independent events, and that recombination may have been subsequently restored in some cases. This illustrates that fungal mating‐type chromosomes can exhibit linkage relationship that are quite dynamic, adding to the list of similarities to animal or plant sex chromosomes. However, fungi such as M. lychnidis‐dioicae and N. tetrasperma exhibit an automictic mating system, for which an alternate theoretical framework exists to explain the evolution of linkage with the mating‐type locus. This study encourages further comparative studies among fungi to evaluate the role of mating systems in determining the evolution of fungal mating‐type chromosomes.  相似文献   

10.
11.
Eighty years ago, Alexander Fleming described the antibiotic effects of a fungus that had contaminated his bacterial culture, kick starting the antimicrobial revolution. The fungus was later ascribed to a putatively globally distributed asexual species, Penicillium chrysogenum. Recently, the species has been shown to be genetically diverse, and possess mating‐type genes. Here, phylogenetic and population genetic analyses show that this apparently ubiquitous fungus is actually composed of at least two genetically distinct species with only slight differences detected in physiology. We found each species in air and dust samples collected in and around St Mary’s Hospital where Fleming worked. Genotyping of 30 markers across the genome showed that preserved fungal material from Fleming’s laboratory was nearly identical to derived strains currently in culture collections and in the same distinct species as a wild progenitor strain of current penicillin producing industrial strains rather than the type species P. chrysogenum. Global samples of the two most common species were found to possess mating‐type genes in a near 1:1 ratio, and show evidence of recombination with little geographic population subdivision evident. However, no hybridization was detected between the species despite an estimated time of divergence of less than 1 MYA. Growth studies showed significant interspecific inhibition by P. chrysogenum of the other common species, suggesting that competition may facilitate species maintenance despite globally overlapping distributions. Results highlight under‐recognized diversity even among the best‐known fungal groups and the potential for speciation despite overlapping distribution.  相似文献   

12.
In the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae), two sympatric strains have been recognized that have been termed corn strain (C) and rice strain (R), referring to their most common host plants. Both strains are reproductively isolated via a distinct prezygotic barrier as well as via an intriguing postzygotic phenomenon: when R females have mated with C males, the resulting RC hybrid females exhibit dramatically reduced fertility independent of their mating partner. Here, we demonstrate that the reduced fertility is caused by the fact that these females refrain from mating, that is, females are behaviorally sterile. We identified a Z‐chromosomally linked sterility locus that is most likely incompatible with yet to be identified autosomal (or cytoplasmic) factors, leading to the observed sexual abstinence. Within‐chromosome mapping revealed the sterility locus to be located in an area of strongly reduced interstrain recombination.  相似文献   

13.
Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant beta-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the alpha-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The alpha-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaDeltaMAT strain). After fertilization with a P. anserina MAT1-2 (MAT(+)) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum.  相似文献   

14.
Northern corn leaf spot, a foliar disease caused by Cochliobolus carbonum, has become prevalent in southwestern China, especially in the Yunnan Province. Races and mating types were identified for 169 isolates collected from 13 prefectures of Yunnan by artificial inoculation using six hybrid corns as differential hosts and by crossing with three standard mating strains: CC092 (MAT1‐2), CC120 (MAT1‐1) and CC026 (MAT1‐1). Results showed the existence of three races: CCR1 (one isolate), CCR2 (43 isolates) and CCR3 (125 isolates). Most isolates were moderately or weakly virulent with only five being highly virulent. CCR3 was widely distributed and significantly more virulent than CCR2 that coexisted with CCR3 in many locations. On Sach's nutrient agar, 20.71% of the Yunnan isolates self‐mated, forming sterile perithecia. Fully developed perithecia could be formed between isolates of different geographic origins, but only 15.98% strains mated successfully with CC092 and 5.33% formed mature perithecia with 4–6 ascospores per asus. Similar results were obtained in crossing with CC026 or CC120. Mating could also occur between CCR3 and CCR2. Both mating types were found in Yunnan with 84 MAT1‐1 strains (one CCR1, 10 CCR2 and 73 CCR3) and 85 MAT1‐2 strains (33 CCR2 and 52 CCR3) and they coexisted in most areas. To identify the mating type rapidly, three specific primers were successfully developed and employed to amplify the mating‐type genes, with stable patterns of 1627 and 876 bp fragments obtained from MAT1‐1 and MAT1‐2 isolates, respectively. The ratio between MAT1‐1 and MAT1‐2 was 1 : 1, indicating that the mating‐type genes segregated randomly in the field naturally.  相似文献   

15.
The distribution of mating types of Ascochyta rabiei (teleomorph: Didymella rabiei) was determined in Tunisia using a MAT‐specific PCR assay. Among 123 isolates tested, 80% were MAT1‐1 and 20%MAT1‐2. Only MAT1‐1 isolates were present in the Beja and Bizerte regions of Tunisia, whereas both mating types were present in Nabeul, Kef and Jendouba. In the latter three regions, the hypothesis of random mating could not be rejected based on chi‐squared tests of mating‐type ratios (P > 0.05). The lower frequency of the MAT1‐2 coupled with the restricted distribution of this mating type in Tunisia may indicate a recent introduction of MAT1‐2 in Tunisia. This speculation is consistent with the recent (2001) observation of D. rabiei pseudothecia on chickpea debris in Tunisia. Forty isolates representative of the five regions were genetically analysed using 10 random amplified polymorphic DNA (RAPD) primers to provide a preliminary estimate of genetic diversity of the pathogen in Tunisia. Among 129 putative RAPD loci amplified, 81% were polymorphic and 32 unique RAPD fingerprints were detected. A high level of genetic differentiation was detected among subpopulations (GST = 0.33). Cluster analyses revealed that isolates from Bizerte, Beja and Jendouba were genetically similar and distinct from isolates sampled in Nabeul and Kef. MAT1‐1 isolates were clustered separately from MAT1‐2 isolates in Jendouba and Nabeul suggesting that recombination may not yet be occurring in these regions despite the occurrence of both mating types in equal frequency in these regions. This lack of recombination between MAT1‐1 and MAT1‐2 also supports the hypothesis of a recent introduction of MAT1‐2 into Tunisia.  相似文献   

16.
The sexual stage of pathogens governs recombination patterns and often also provides means of surviving the off‐season. Despite its importance for evolutionary potential and between‐season epidemiology, sexual systems have not been carefully investigated for many important pathogens, and what generates variation in successful sexual reproduction of pathogens remains unexplored. We surveyed the sexually produced resting structures (chasmothecia) across 86 natural populations of fungal pathogen Podosphaera plantaginis (Ascomycota) naturally infecting Plantago lanceolata in the Åland archipelago, southwestern Finland. For this pathosystem, these resting structures are a key life‐history stage, as more than half of the local pathogen populations go extinct every winter. We uncovered substantial variation in the level of chasmothecia produced among populations, ranging from complete absence to presence on all infected leaves. We found that chasmothecia developed within clonal isolates (single‐strain cultures). Additionally, these clonal isolates all contained both MAT1‐1‐1 and MAT1‐2‐1 genes that characterize mating types in Ascomycetes. Hence, contrary to expectations, we conclude that this species is capable of haploid selfing. In controlled inoculations, we discovered that pathogen genotypes varied in their tendency to produce chasmothecia. Production of chasmothecia was also affected by ambient temperature (E) and by the interaction between temperature and pathogen genotype (G × E). These G, E and G × E effects found both at a European scale and within the Åland archipelago may partly explain the high variability observed among populations in chasmothecia levels. Consequently, they may be key drivers of the evolutionary potential and epidemiology of this highly dynamic pathosystem.  相似文献   

17.
Traditionally derived from fossil fuels, biological production of propionic acid has recently gained interest. Propionibacterium species produce propionic acid as their main fermentation product. Production of other organic acids reduces propionic acid yield and productivity, pointing to by‐products gene‐knockout strategies as a logical solution to increase yield. However, removing by‐product formation has seen limited success due to our inability to genetically engineer the best producing strains (i.e. Propionibacterium acidipropionici). To overcome this limitation, random mutagenesis continues to be the best path towards improving strains for biological propionic acid production. Recent advances in next generation sequencing opened new avenues to understand improved strains. In this work, we use genome shuffling on two wild type strains to generate a better propionic acid producing strain. Using next generation sequencing, we mapped the genomic changes leading to the improved phenotype. The best strain produced 25% more propionic acid than the wild type strain. Sequencing of the strains showed that genomic changes were restricted to single point mutations and gene duplications in well‐conserved regions in the genomes. Such results confirm the involvement of gene conversion in genome shuffling as opposed to long genomic insertions.  相似文献   

18.
Chickpea fields were surveyed in nine major chickpea‐growing provinces of Syria in 2008 and 2009 to determine the prevalence and severity of Ascochyta blight, and the distribution of Didymella rabiei mating types (MATs) in the country. A total of 133 Ascochyta rabiei isolates were assayed for mating type, including isolates from older collections that date back to 1982. Multiplex MAT‐specific PCR with three primers was used for MAT analysis. Out of the 133 tested isolates, 64% were MAT1‐1 and 36% were MAT1‐2. Both MATs were found in six provinces but MAT1‐1 alone was found in three provinces. Chi‐squared analysis was used to test for a 1 : 1 ratio of MAT frequencies in all samples. The MAT ratios in the six provinces were not significantly different from 1 : 1, suggesting that there is random mating of the pathogen population under natural conditions. The presence of the two MATs is expected to play a role in the evolution of novel virulence genes that could threaten currently resistant chickpea varieties. Overall analysis of the 133 isolates showed a significant deviation from the 1 : 1 ratio with almost twice as many MAT1‐1 isolates than MAT1‐2 isolates, which indicates a competitive advantage associated with MAT1‐1 in Syria. However, the overall picture of an unequal frequency in MATs indicates that there may be limited sexual recombination occurring in the Syrian population.  相似文献   

19.
Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence associated traits.  相似文献   

20.
Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight epidemics. To develop fungal strains to test this hypothesis, the entire mating type (MAT1) locus was deleted from a self-fertile (MAT1-1/MAT1-2), virulent, trichothecene-producing wild-type strain of G. zeae. The resulting MAT deletion (mat1-1/mat1-2) strains were unable to produce perithecia or ascospores and appeared to be unable to mate with the fertile strain from which they were derived. Complementation of a MAT deletion strain by transformation with a copy of the entire MAT locus resulted in recovery of production of perithecia and ascospores. MAT deletion strains and MAT-complemented strains retained the ability to produce macroconidia that could cause head blight, as assessed by direct injection into wheat heads in greenhouse tests. Availability of MAT-null and MAT-complemented strains provides a means to determine the importance of ascospores in the biology of G. zeae and perhaps to identify novel approaches to control wheat head blight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号