首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched β(1‐3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.  相似文献   

2.
3.
Aims: To elucidate the roles of the β‐1,3‐endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. Methods and Results: A β‐1,3‐endoglucanase was purified from carbon‐starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene‐expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. Conclusions: The β‐1,3‐endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall–degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. Significance and Impact of the Study: No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.  相似文献   

4.
5.
To be utilized in biomass conversion, including ethanol production and galactosylated oligosaccharide synthesis, namely prebiotics, the gene of extracellular endo‐β‐1,4‐mannanase (EC 3.2.1.78) of Aspergillus fumigatus IMI 385708 (formerly known as Thermomyces lanuginosus IMI 158749) was expressed first in Aspergillus sojae and then in Pichia pastoris under the control of the glyceraldehyde triphosphate dehydrogenase (gpdA ) and the alcohol oxidase (AOX1 ) promoters, respectively. The highest production of mannanase (352 U mL?1) in A. sojae was observed after 6 days of cultivation. In P. pastoris, the highest mannanase production was observed 10 h after induction with methanol (61 U mL?1). The fold increase in mannanase production was estimated as ~12‐fold and ~2‐fold in A. sojae and P. pastoris, respectively, when compared with A. fumigatus. Both recombinant enzymes showed molecular mass of about 60 kDa and similar specific activities (~350 U mg?1 protein). Temperature optima were at 60°C and 45°C, and maximum activity was at pH 4.5 and 5.2 for A. sojae and P. pastoris, respectively. The enzyme from P. pastoris was more stable retaining most of the activity up to 50°C, whereas the enzyme from A. sojae rapidly lost activity above 40°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Euglena gracilis is shown to be able to grow on potato liquor as the main medium component leading to an interesting biotechnological product represented by paramylon – a β‐1,3‐glucan – and, at the same time, revaluating an otherwise annoying waste stream of the potato‐starch industry. Paramylon mass fractions of about 75% are obtained for biomass concentrations of 15 g/L during simple batch cultivation under heterotrophic conditions. Supplementation of the growth medium with glucose and the vitamins B1 and B12 are shown to improve growth rate as well as paramylon content. E. gracilis grows best at about 27.5°C without requiring pH control.  相似文献   

7.
Euglena gracilis was cultivated on a synthetic medium of well‐defined components. Biomass and paramylon (β‐1,3‐glucan) concentrations were the most important variables monitored. Mass production in the bioreactor was carried out following studies of operating conditions in shaken flasks. E. gracilis grew best at about 30°C and at a low pH of 3. A pH control was not necessary, although the pH increased considerably at the end of the cultivation processes. Aeration could be performed at low stirrer frequency. Biomass concentrations of about 13–14 g/L were obtained with paramylon mass fractions of 50–60%, by starting with a synthetic medium containing 15 g/L of glucose as the main carbon source.  相似文献   

8.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

9.
Recently, it had been shown that Euglena gracilis was able to grow heterotrophically not only on synthetic media, but also on media based on potato liquor. Supplementation with glucose in both cases led to the accumulation of paramylon, a β‐1,3‐glucan. Thus, such a process may yield a valuable product accompanied by the revaluation of an otherwise annoying waste stream of the potato‐starch industry. Actually, process strategies have been evaluated in order to optimise the concentration of paramylon obtained at the end of the cultivation process. Therefore, cultivation processes based on fed‐batch and in particular repeated‐batch strategies have been studied. It is shown that repeated‐batch operation maybe particularly suited for such a process since E. gracilis seems to adapt gradually to the cultivation medium so that the concentration of media components may be increased step by step. Repeated‐batch cultivation of E. gracilis leads to biomass concentrations in access of 20 g/L with a consistent paramylon mass fraction of about 75%. Cultivations have been carried out at an operating temperature of 27.5°C. As had been found earlier already, pH control is not required during cultivation. On the basis of these results it is clear that repeated‐batch cultivation represent a simple and economic way for the production of paramylon by heterotrophic cultivation of E. gracilis.  相似文献   

10.
A link between senescence‐induced decline in photosynthesis and activity of β‐glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50°C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall‐bound β‐glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3‐(3,4‐dichlorophenyl)‐1, 1‐dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy‐dependent senescence program.  相似文献   

11.
β‐1,3‐glucan recognition proteins (βGRPs) function as pattern recognition receptors in the innate immune response against invading pathogens. In the present study, we obtain full‐length cDNA clones for two novel putative βGRPs: TpβGRPc and TpβGRPd from the ghost moth Thitarodes pui (Lepidoptera: Hepialidae). Phylogenetic analysis shows a small distinct lineage, βGRP clade 4, consisting of T. pui βGRPs including TpβGRPa and TpβGRPb that have been identified previously. TpβGRPc and TpβGRPd, comprising 488 and 229 amino acids, have calculated molecular masses of 52 596 and 24 589 Da, respectively. TpβGRPc is 85.52% identical in sequence to TpβGRPa. TpβGRPb and TpβGRPd share the same deletion start site located at the conserved residue Pro 43, although TpβGRPd exhibits a much larger deletion of up to approximately 270 residues covering both the N‐ and C‐terminal regions. Affinity purification, associated with subsequent peptide sequencing, confirms the constitutive occurrence of TpβGRPa and TpβGRPc of similar size (approximately 65 kDa) in sixth‐instar larval haemolymph. These two βGRPs show clear binding affinities to curdlan, an insoluble β‐1,3‐glucan. A quantitative real‐time polymerase chain reaction analysis reveals the high‐level constitutive expression of TpβGRPc and TpβGRPd in the fat body of mid‐instar larvae, which are found to be susceptible to fungal pathogens in field investigations. Remarkable induction of both TpβGRPs occurs in response to haemocoelic challenge with entomopathogenic fungus Beauveria bassiana. The results of the present study suggest that TpβGRPs may contribute to the detection and control of fungal infections.  相似文献   

12.
13.
Cell walls are essential for fungal survival and growth. Fungal walls are ~ 90% carbohydrate, mostly types not found in humans, making them promising targets for anti‐fungal drug development. Echinocandins, which inhibit the essential β‐glucan synthase, are already clinically available. In contrast, α‐glucan, another abundant fungal cell wall component has attracted relatively little research attention because it is not essential for most fungi. Aspergillus nidulans has two α‐glucan synthases (AgsA and AgsB) and two α‐amylases (AmyD and AmyG), all of which affect α‐glucan synthesis. Gene deletion showed that AgsB was the major synthase. In addition, AmyG promoted α‐glucan synthesis whereas AmyD had a repressive effect. The lack of α‐glucan had no phenotypic impact on solid medium, but reduced conidial adhesion during germination in shaken liquid. Moreover, α‐glucan level correlated with resistance to Calcofluor White. Intriguingly, overexpression of agsA could compensate for the loss of agsB at the α‐glucan level, but not for phenotypic defects. Thus, products of AgsA and AgsB have different roles in the cell wall, consistent with agsA being mainly expressed at conidiation. These results suggest that α‐glucan contributes to drug sensitivity and conidia adhesion in A. nidulans, and is differentially regulated by two synthases and two amylases.  相似文献   

14.
15.
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe‐derived or modified‐self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β‐glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β‐glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β‐1,3‐glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β‐1,3‐glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β‐1,3‐glucans. Hydrolysis of the β‐1,6 side‐branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long‐chain β‐glucans. Moreover, in contrast to the recognition of short β‐1,3‐glucans in A. thaliana, perception of long β‐1,3‐glucans in N. benthamiana and rice is independent of CERK1, indicating that β‐glucan recognition may be mediated by multiple β‐glucan receptor systems.  相似文献   

16.
In search for new drugs lowering arterial blood pressure, which could be applied in anti‐hypertensive therapy, research concerning agents blocking of renin‐angiotensin‐aldosteron system has been conducted. Despite many years of research conducted at many research centers around the world, aliskiren is the only one renin inhibitor, which is used up to now. Four novel potential renin inhibitors, having structure based on the peptide fragment 8–13 of human angiotensinogen, a natural substrate for renin, were designed and synthesized. All these inhibitors contain unnatural moieties that are derivatives of N‐methylleucyl‐β‐hydroxy‐γ‐amino acids at the P2‐P1' position: 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐7‐(3‐nitroguanidino)‐heptanoic acid (AHGHA), 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐5‐phenyl‐pentanoic acid (AHPPA) or 4‐[N‐(N‐methylleucyl)‐amino]‐8‐benzyloxycarbonylamino‐3‐hydroxyoctanoic acid (AAHOA). The previously listed synthetic β‐hydroxy‐γ‐amino acids constitute pseudodipeptidic units that correspond to the P1‐P1' position of the inhibitor molecule. An unnatural amino acid, 4‐methoxyphenylalanin (Phe(4‐OMe)), was introduced at the P3 position of the obtained compounds. Three of these compounds contain isoamylamide of 6‐aminohexanoic acid (ε‐Ahx‐Iaa) at the P2'‐P3' position. The proposed modifications of the selected human angiotensinogen fragment are intended to increase bioactivity, bioavailability, and stability of the inhibitor molecule in body fluids and tissues. The inhibitor Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐OEt was obtained in the form of an ethyl ester. The hydrophobicity coefficient, expressed as log P varied between 3.95 and 8.17. In vitro renin inhibitory activity of all obtained compounds was contained within the range 10?6‐10?9 M. The compound Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa proved to be the most active (IC50 = 1.05 × 10?9 M). The compounds Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐Ahx‐Iaa and Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa are resistant to chymotrypsin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
18.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号