首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant‐negative yscF alleles that prevented effector secretion in the presence of wild‐type (WT) YscF. One allele, yscF‐L54V, prevents WT YscF secretion and needle assembly, although purified YscF‐L54V polymerizes in vitro. YscF‐L54V binds to its chaperones YscE and YscG, and the YscF‐L54V–EG complex targets to the T3SS ATPase, YscN. We propose that YscF‐L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF‐L54V does not affect the activity of pre‐assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate‐specific binding site as a mechanism to exclude early substrates from Yop‐secreting machines.  相似文献   

2.
Type III secretion (T3S), a protein export pathway common to Gram‐negative pathogens, comprises a trans‐envelope syringe, the injectisome, with a cytoplasm‐facing translocase channel. Exported substrates are chaperone‐delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first “translocators”, then “effectors”. We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane‐associated pseudo‐effector SepL and its chaperone SepD. This renders SepL a high‐affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD‐coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.  相似文献   

3.
The type VI secretion system (T6SS) is an anti‐bacterial weapon comprising a contractile tail anchored to the cell envelope by a membrane complex. The TssJ, TssL, and TssM proteins assemble a 1.7‐MDa channel complex that spans the cell envelope, including the peptidoglycan layer. The electron microscopy structure of the TssJLM complex revealed that it has a diameter of ~18 nm in the periplasm, which is larger than the size of peptidoglycan pores (~2 nm), hence questioning how the T6SS membrane complex crosses the peptidoglycan layer. Here, we report that the MltE housekeeping lytic transglycosylase (LTG) is required for T6SS assembly in enteroaggregative Escherichia coli. Protein–protein interaction studies further demonstrated that MltE is recruited to the periplasmic domain of TssM. In addition, we show that TssM significantly stimulates MltE activity in vitro and that MltE is required for the late stages of T6SS membrane complex assembly. Collectively, our data provide the first example of domestication and activation of a LTG encoded within the core genome for the assembly of a secretion system.  相似文献   

4.
Enteropathogenic Escherichia coli employs a type III secretion system (T3SS) to translocate virulence effector proteins directly into enterocyte host cells, leading to diarrheal disease. The T3SS is encoded within the chromosomal locus of enterocyte effacement (LEE). The function of some of the LEE-encoded proteins remains unknown. Here we investigated the role of the Orf16 protein in T3SS biogenesis and function. An orf16 deletion mutant showed translocator and effector protein secretion profiles different from those of wild-type cells. The orf16 null strain produced T3S structures with abnormally long needles and filaments that caused weak hemolysis of red blood cells. Furthermore, the number of fully assembled T3SSs was also reduced in the orf16 mutant, indicating that Orf16, though not essential, is required for efficient T3SS assembly. Analysis of protein secretion revealed that Orf16 is a T3SS-secreted substrate and regulates the secretion of the inner rod component EscI. Both pulldown and yeast two-hybrid assays showed that Orf16 interacts with the C-terminal domain of an inner membrane component of the secretion apparatus, EscU; the inner rod protein EscI; the needle protein EscF; and the multieffector chaperone CesT. These results suggest that Orf16 regulates needle length and, along with EscU, participates in a substrate specificity switch from early substrates to translocators. Taken together, our results suggest that Orf16 acts as a molecular measuring device in a way similar to that of members of the Yersinia YscP and flagellar FliK protein family. Therefore, we propose that this protein be renamed EscP.  相似文献   

5.
The Gram‐negative bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a type III secretion system (T3SS) into eukaryotic cells. The T3SS spans both bacterial membranes and consists of more than 20 proteins, 9 of which are conserved in plant and animal pathogens and constitute the core subunits of the secretion apparatus. T3S in X. campestris pv. vesicatoria also depends on nonconserved proteins with yet unknown function including HrpB7, which contains predicted N‐ and C‐terminal coiled‐coil regions. In the present study, we provide experimental evidence that HrpB7 forms stable oligomeric complexes. Interaction and localisation studies suggest that HrpB7 interacts with inner membrane and predicted cytoplasmic (C) ring components of the T3SS but is dispensable for the assembly of the C ring. Additional interaction partners of HrpB7 include the cytoplasmic adenosinetriphosphatase HrcN and the T3S chaperone HpaB. The interaction of HrpB7 with T3SS components as well as complex formation by HrpB7 depends on the presence of leucine heptad motifs, which are part of the predicted N‐ and C‐terminal coiled‐coil structures. Our data suggest that HrpB7 forms multimeric complexes that associate with the T3SS and might serve as a docking site for the general T3S chaperone HpaB.  相似文献   

6.
Flagellar type III secretion systems (T3SS) contain an essential cytoplasmic‐ring (C‐ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non‐flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF‐T3SS C‐ring component in Shigella flexneri is alternatively translated to produce both full‐length (Spa33‐FL) and a short variant (Spa33‐C), with both required for secretion. They associate in a 1:2 complex (Spa33‐FL/C2) that further oligomerises into elongated arrays in vitro. The structure of Spa33‐C2 and identification of an unexpected intramolecular pseudodimer in Spa33‐FL reveal a molecular model for their higher order assembly within NF‐T3SS. Spa33‐FL and Spa33‐C are identified as functional counterparts of a FliM–FliN fusion and free FliN respectively. Furthermore, we show that Thermotoga maritima FliM and FliN form a 1:3 complex structurally equivalent to Spa33‐FL/C2, allowing us to propose a unified model for C‐ring assembly by NF‐T3SS and flagellar‐T3SS.  相似文献   

7.
During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase‐1, which in turn triggers macrophage pyroptosis and IL‐1β/IL‐18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore‐forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase‐11 activation. Surprisingly, previous studies indicated that a T3SS‐induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS‐negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore‐forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll‐like receptors, and thus enhanced the expression of inflammatory proteins including pro‐IL‐1β and TNF‐α. However, mature‐IL‐1β and IL‐18 were undetectable in wild‐type mice, suggesting that ExlA failed to effectively activate caspase‐1. Nevertheless, caspase‐1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA‐induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome‐dependent process.  相似文献   

8.
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed “ruler” protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a “ball-and-chain” architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein''s N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.  相似文献   

9.
作为一种对抗真核细胞和原核细胞的强有力细菌武器,Ⅵ型分泌系统(type Ⅵ secretion system,T6SS)广泛存在于革兰氏阴性菌中。铜绿假单胞菌是一种对多种抗生素具有耐药性并能够在人体引发急性和慢性感染的条件致病菌,它编码3套独立的T6SS,分别为H1-、H2-和H3-T6SS。T6SS通过介导细菌间竞争、生物被膜的形成、金属离子的摄取以及与真核宿主细胞之间的相互作用,对铜绿假单胞菌在毒力和适应环境方面发挥重要作用。本文主要对铜绿假单胞菌T6SS的组装、效应蛋白的分泌、功能及调控机制展开综述,旨在为T6SS的研究提供一定的参考,并为铜绿假单胞菌感染的预防和治疗提供一定的指导。  相似文献   

10.
The type III secretion system (T3SS) is essential in the pathogenesis of many bacteria. The inner rod is important in the assembly of the T3SS needle complex. However, the atomic structure of the inner rod protein is currently unknown. Based on computational methods, others have suggested that the Salmonella inner rod protein PrgJ is highly helical, forming a folded 3 helix structure. Here we show by CD and NMR spectroscopy that the monomeric form of PrgJ lacks a tertiary structure, and the only well-structured part of PrgJ is a short α-helix at the C-terminal region from residues 65-82. Disruption of this helix by glycine or proline mutation resulted in defective assembly of the needle complex, rendering bacteria incapable of secreting effector proteins. Likewise, CD and NMR data for the Shigella inner rod protein MxiI indicate this protein lacks a tertiary structure as well. Our results reveal that the monomeric forms of the T3SS inner rod proteins are partially folded.  相似文献   

11.
Type III secretion injectisomes are essential virulence factors for many pathogenic bacteria by mediating the transport of effector proteins into eukaryotic host cells. The secretion conduit of injectisomes is formed by a helical assembly of three hydrophobic proteins (SctR, SctS and SctT), an inner rod (SctI) and a needle filament (SctF). SctI is thought to play a role in switching between the secretion of different substrate classes and assembly of the inner rod has been implicated in regulating the length of the needle filament. While high‐resolution structures of the hydrophobic components and of the needle filament have been solved, little is known about the structure and the assembly of the inner rod, which impedes the deeper assessment of its function. Here we show by exhaustive in vivo photocrosslinking that SctI engages in extensive interactions with SctR and SctT throughout its entire length. Our data imply that the inner rod serves as an adapter between the export apparatus and the needle filament by forming one helical turn. We show that assembly of the inner rod does not play a role in needle length control nor in substrate specificity switching. Instead, our findings imply that inner rod assembly must precede assembly of the needle filament.  相似文献   

12.
13.
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.  相似文献   

14.
The type III secretion system (T3SS) is required for the virulence of many gram‐negative bacterial human pathogens. It is composed of several structural proteins, forming the secretion needle and its basis, the basal body. In Chlamydia spp., the T3SS inner membrane ring (IM‐ring) of the basal body is formed by the periplasmic part of CdsD (outer ring) and CdsJ (inner ring). Here we describe the crystal structure of the C‐terminal, periplasmic part of CdsD, not including the last 60 residues. Two crystal forms were obtained, grown in three different crystallization conditions. In both crystal forms there is one molecule per asymmetric unit adopting a similar extended structure. The structures consist of three periplasmic domains (PDs) of similar αββαβ topology as seen also in the structures of the homologous PrgH (Salmonella typhimurium) and YscD (Yersinia enterocolitica). Only in the C2 crystal form, there is a C‐terminal additional helix after the PD3 domain. The relative orientation of the three subsequent CdsD PD domains with respect to each other is more extended than in PrgH but less extended than in YscD. Small‐angle X‐ray scattering data show that also in solution this CdsD construct adopts the same elongated shape. In both crystal forms the CdsD molecules are packed in a parallel fashion, using translational crystallographic symmetry. The most extensive crystal contacts are preserved in both crystal forms, suggesting a possible mode of assembly of the CdsD periplasmic part into a 24‐mer complex forming the outer ring of the IM‐ring of the T3SS.  相似文献   

15.
Virulence-associated type III secretion systems (T3SS) are utilized by Gram negative bacterial pathogens for injection of effector proteins into eukaryotic host cells. The transmembrane export apparatus at the core of T3SS is composed of a unique helical complex of the hydrophobic proteins SctR, SctS, SctT, and SctU. These components comprise a number of highly conserved charged residues within their hydrophobic domains. The structure of the closed state of the core complex SctR5S4T1 revealed that several of these residues form inter- and intramolecular salt bridges, some of which have to be broken for pore opening. Mutagenesis of individual residues was shown to compromise assembly or secretion of both, the virulence-associated and the related flagellar T3SS. However, the exact role of these conserved charged residues in the assembly and function of T3SS remains elusive. Here we performed an in-depth mutagenesis analysis of these residues in the T3SS of Salmonella Typhimurium, coupled to blue native PAGE, in vivo photocrosslinking and luciferase-based secretion assays. Our data show that these conserved salt bridges are not critical for assembly of the respective protein but rather facilitate the incorporation of the following subunit into the assembling complex. Our data also indicate that these conserved charged residues are critical for type III-dependent secretion and reveal a functional link between SctSE44 and SctTR204 and the cytoplasmic domain of SctU in gating the T3SS injectisome. Overall, our analysis provides an unprecedented insight into the delicate requirements for the assembly and function of the machinery at the core of T3SS.  相似文献   

16.
To ensure the optimal infectivity on contact with host cells, pathogenic Pseudomonas syringae has evolved a complex mechanism to control the expression and construction of the functional type III secretion system (T3SS) that serves as a dominant pathogenicity factor. In this study, we showed that the hrpF gene of P. syringae pv. averrhoi, which is located upstream of hrpG, encodes a T3SS‐dependent secreted/translocated protein. Mutation of hrpF leads to the loss of bacterial ability on elicitation of disease symptoms in the host and a hypersensitive response in non‐host plants, and the secretion or translocation of the tested T3SS substrates into the bacterial milieu or plant cells. Moreover, overexpression of hrpF in the wild‐type results in delayed HR and reduced t3ss expression. The results of protein–protein interactions demonstrate that HrpF interacts directly with HrpG and HrpA in vitro and in vivo, and protein stability assays reveal that HrpF assists HrpA stability in the bacterial cytoplasm, which is reduced by a single amino acid substitution at the 67th lysine residue of HrpF with alanine. Taken together, the data presented here suggest that HrpF has two roles in the assembly of a functional T3SS: one by acting as a negative regulator, possibly involved in the HrpSVG regulation circuit via binding to HrpG, and the other by stabilizing HrpA in the bacterial cytoplasm via HrpF–HrpA interaction prior to the secretion and formation of Hrp pilus on the bacterial surface.  相似文献   

17.
Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co‐regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone‐like quality of Hcp. Application of this approach to the Hcp secretion island I‐encoded T6SS (H1‐T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (t ype VI s ecretion e xported 4), subsequently shown to act as a potent intra‐specific H1‐T6SS‐delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1‐T6SS effectors, Tse5 and Tse6, which differ from Hcp‐stabilized substrates by the presence of toxin‐associated PAAR‐repeat motifs and genetic linkage to members of the valine‐glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp‐stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1‐T6SS‐exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.  相似文献   

18.
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.  相似文献   

19.
Type II secretion systems (T2SSs) promote secretion of folded proteins playing important roles in nutrient acquisition, adaptation and virulence of Gram‐negative bacteria. Protein secretion is associated with the assembly of type 4 pilus (T4P)‐like fibres called pseudopili. Initially membrane embedded, pseudopilin and T4 pilin subunits share conserved transmembrane segments containing an invariant Glu residue at the fifth position, E5. Mutations of E5 in major T4 pilins and in PulG, the major pseudopilin of the Klebsiella T2SS abolish fibre assembly and function. Among the four minor pseudopilins, only PulH required E5 for secretion of pullulanase, the substrate of the Pul T2SS. Mass‐spectrometry analysis of pili resulting from the co‐assembly of PulGE5A variant and PulGWT ruled out an E5 role in pilin processing and N‐methylation. A bacterial two‐hybrid analysis revealed interactions of the full‐length pseudopilins PulG and PulH with the PulJ‐PulI‐PulK priming complex and with the assembly factors PulM and PulF. Remarkably, PulGE5A and PulHE5A variants were defective in interaction with PulM but not with PulF, and co‐purification experiments confirmed the E5‐dependent interaction between native PulM and PulG. These results reveal the role of E5 in a recruitment step critical for assembly of the functional T2SS, likely relevant to T4P assembly systems.  相似文献   

20.
In Pseudomonas aeruginosa three type VI secretion systems (T6SSs) coexist, called H1‐ to H3‐T6SSs. Several T6SS components are proposed to be part of a macromolecular complex resembling the bacteriophage tail. The T6SS protein HsiE1 (TagJ) is unique to the H1‐T6SS and absent from the H2‐ and H3‐T6SSs. We demonstrate that HsiE1 interacts with a predicted N‐terminal α‐helix in HsiB1 (TssB) thus forming a novel subcomplex of the T6SS. HsiB1 is homologous to the Vibrio cholerae VipA component, which contributes to the formation of a bacteriophage tail sheath‐like structure. We show that the interaction between HsiE1 and HsiB1 is specific and does not occur between HsiE1 and HsiB2. Proteins of the TssB family encoded in T6SS clusters lacking a gene encoding a TagJ‐like component are often devoid of the predicted N‐terminal helical region, which suggests co‐evolution. We observe that a synthetic peptide corresponding to the N‐terminal 20 amino acids of HsiB1 interacts with purified HsiE1 protein. This interaction is a common feature to other bacterial T6SSs that display a TagJ homologue as shown here with Serratia marcescens. We further show that hsiE1 is a non‐essential gene for the T6SS and suggest that HsiE1 may modulate incorporation of HsiB1 into the T6SS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号