首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern and intensity of pigmentation have direct impact on individual fitness through various ecological factors. In a Drosophila melanogaster population from southern Japan, thoracic trident pigmentation intensity of most of the strains could be classified into Dark or Light‐type. The expression level variation of the ebony gene correlated well with this phenotype and the allelic differences in expression indicated that the variation is partly due to cis‐regulatory changes. In the ~13 kb gene region, we identified 17 nucleotide sites and 2 indels that were in complete association with the thoracic trident pigmentation intensity. Interestingly, 11 out of 19 sites located within ~0.5 kb of the core epidermis enhancer. These sites had no obvious association with the abdominal pigmentation intensity in the previously analysed African populations from Uganda and Kenya, which suggested that multiple potential mutational pathways in the cis‐regulatory control region of a single gene could lead to similar phenotypic variation within this species. We also found that the Light‐type enhancer haplotype is strongly linked to a cosmopolitan inversion, In(3R)Payne, which is predominant in warmer climatic regions in both hemispheres. The sequence pattern suggested that the strong linkage may be due to selective forces related to thermal adaptation. The inferred selection for lighter pigmentation in the Japanese population is in the opposite direction of the previously reported case of selection for darker individuals in African populations. Nevertheless, both adaptive changes involved cis‐regulatory changes of ebony, which shows that this gene is likely to be a common target of natural selection.  相似文献   

2.
Pigmentation is a model trait for evolutionary and developmental analysis that is particularly amenable to molecular investigation in the genus Drosophila. To better understand how this phenotype evolves, we examined divergent pigmentation and gene expression over developmental time in the dark‐bodied D. americana and its light‐bodied sister species D. novamexicana. Prior genetic analysis implicated two enzyme‐encoding genes, tan and ebony, in pigmentation divergence between these species, but questions remain about the underlying molecular mechanisms. Here, we describe stages of pupal development in both species and use this staging to determine when pigmentation develops and diverges between D. americana and D. novamexicana. For the developmental stages encompassing pigment divergence, we compare mRNA expression of tan and ebony over time and between species. Finally, we use allele‐specific expression assays to determine whether interspecific differences in mRNA abundance have a cis‐regulatory basis and find evidence of cis‐regulatory divergence for both tan and ebony. cis‐regulatory divergence affecting tan had a small effect on mRNA abundance and was limited to a few developmental stages, yet previous data suggests that this divergence is likely to be biologically meaningful. Our study suggests that small and developmentally transient expression changes may contribute to phenotypic diversification more often than commonly appreciated. Recognizing the potential phenotypic impact of such changes is important for a scientific community increasingly focused on dissecting quantitative variation, but detecting these types of changes will be a major challenge to elucidating the molecular basis of complex traits.  相似文献   

3.
Widespread pigmentation diversity coupled with a well‐defined genetic system of melanin synthesis and patterning in Drosophila provides an excellent opportunity to study phenotypes undergoing evolutionary change. Pigmentation variation is highly correlated with different ecological variables and is thought to reflect adaptations to different environments. Several studies have linked candidate genes from Drosophila melanogaster to intra‐population variation and interspecific morphological divergence, but less clearly to variation among populations forming pigmentation clines. We characterized a new thoracic trident pigmentation cline in D. melanogaster populations from eastern Australia, and applied a candidate gene approach to explain the majority of the geographically structured phenotypic variation. More melanized populations from higher latitudes tended to express less ebony than their tropical counterparts, and an independent artificial selection experiment confirmed this association. By partitioning temperature dependent effects, we showed that the genetic differences underlying clinal patterns for trident variation at 25 °C do not explain the patterns observed at 16 °C. Changes in thoracic trident pigmentation could be a common evolutionary response to climatically mediated environmental pressures. On the Australian east coast most of the changes appear to be associated with regulatory divergence of the ebony gene but this depends on temperature.  相似文献   

4.
Kohn MH  Wittkopp PJ 《Molecular ecology》2007,16(14):2831-2833
The distinctive black phenotype of ebony mutants has made it one of the most widely used phenotypic markers in Drosophila genetics. Without doubt, ebony showcases the fruits of the fly community's labours to annotate gene function. As of this writing, FlyBase lists 142 references, 1277 fly stocks, 15 phenotypes and 44 alleles. In addition to its namesake pigmentation phenotype, ebony mutants affect other traits, including phototaxis and courtship. With phenotypic consequences of ebony variants readily apparent in the laboratory, does natural selection also see them in the wild? In this issue of Molecular Ecology, Pool & Aquadro investigate this question and found signs of natural selection on the ebony gene that appear to have resulted from selection for darker pigmentation at higher elevations in sub‐Saharan populations of Drosophila melanogaster. Such findings from population genomic analysis of wild‐derived strains should be included in gene annotations to provide a more holistic view of a gene's function. The evolutionary annotation of ebony added by Pool & Aquadro substantiates that pigmentation can be adaptive and implicates elevation as an important selective factor. This is important progress because the selective factors seem to differ between populations and species. In addition, the study raises issues to consider when extrapolating from selection at the molecular level to selection at the phenotypic level.  相似文献   

5.
Traits with a common genetic basis frequently display correlated phenotypic responses to selection or environmental conditions. In Drosophila melanogaster, pigmentation of the abdomen and a trident‐shaped region on the thorax are genetically correlated. Here, we used a pooled replicated genomewide association approach (Pool‐GWAS) to identify the genetic basis of variation in thoracic trident pigmentation in two Drosophila melanogaster populations. We confirmed the previously reported large effect of ebony and the association of the cosmopolitan inversion In(3R)Payne. For the first time, we identified tan as another major locus contributing to variation in trident pigmentation. Intriguingly, the regulatory variants of tan that were most strongly associated with female abdominal pigmentation also showed a strong association with trident pigmentation. We validated this common genetic basis in transgenic assays and found qualitatively similar effects on trident and abdominal pigmentation. Further work is required to determine whether this genetic correlation is favoured by natural selection or reflects a neutral by‐product of a shared regulatory architecture.  相似文献   

6.
Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster.  相似文献   

7.
Summary The alcohol dehydrogenase gene (Adh gene) ofDrosophila affinidisjuncta is expressed at a higher level in the larval midgut and Malpighian tubules than the homologous gene fromDrosophila hawaiiensis. This study analyzed thecis-acting sequences responsible for these regulatory differences in larval tissues ofDrosophila melanogaster transformants. A series of 10 chimeric and deletedAdh genes was introduced into the germ line ofD. melanogaster, and tissue-specific expression levels were quantified by gel electrophoresis of tissue extracts. Sequences in the upstream region of the two genes had the strongest influence on enzyme production in the midgut and Malpighian tubules. Other sequence elements also showed effects, some of which were tissue specific. Most gene fragments displayed context-dependent effects, thus supporting the proposed model of polygenic regulation ofAdh gene expression.  相似文献   

8.
Body size often shows adaptive clines in many ectotherms across altitude and latitude, but little is known about the genetic basis of these adaptive clines. Here we identify a polymorphism in the Dca (Drosophila cold acclimation) gene in Drosophila melanogaster that influences wing size, affects wing:thorax allometry and also controls a substantial proportion of the clinal wing‐size variation. A polymorphism in the promoter region of Dca had two common alleles showing strong reciprocal clinal variation in frequency with latitude along the east coast of Australia. The Dca‐237 allele increased towards the tropics where wing size is smaller. A within‐population association study highlighted that an increase in the frequency of this allele decreased wing size but did not influence thorax size. A manipulated increase in the level of expression of Dca achieved through UAS‐GAL4 was associated with a decrease in wing size but had no effect on thorax size. This was consistent with higher Dca expression levels in family lines with higher frequency of the Dca‐237 allele. Genetic variation in the promoter region of the Dca gene appears to influence adaptive size variation in the eastern Australian cline of Drosophila melanogaster and accounts for more than 10% of the genetic variation in size within and between populations.  相似文献   

9.
10.
11.
12.
13.
14.
《Fly》2013,7(2):75-81
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

15.
In a previous bioinformatics analysis we identified 10 conserved Drosophila melanogaster sequences that reside upstream from protein coding genes (CGs). Here we characterize one of these genomic regions, which constitutes a Drosophila melanogaster cis‐regulatory module (CRM) that we denominate TT‐CRM. The TT‐CRM is 646 bp long and is located in one of the introns of CG32239 and resides about 3,500 bp upstream of CG13711 and about 620 bp upstream of CG12493. Analysis of 646 bp‐lacZ lines revealed that TT‐CRM drives gene expression not only to the larval, prepupal, and pupal tracheal system but also to the adult dorsal longitudinal muscles. The patterns of mRNA expression of the transgene and of the CGs that lie in the vicinity of TT‐CRM were investigated both in dissected trachea and in adult thoraces. Through RT‐qPCR we observed that in the tracheal system the pattern of expression of 646 bp‐lacZ is similar to the pattern of expression of CG32239 and CG13711, whereas in the thoracic muscles 646 bp‐lacZ expression accompanies the expression of CG12493. Together, these results suggest new functions for two previously characterized D. melanogaster genes and also contribute to the initial characterization of a novel CRM that drives a dynamic pattern of expression throughout development.  相似文献   

16.
Insect body pigmentation and coloration are critical to adaption to the environment. To explore the mechanisms that drive pigmentation, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing system to target the ebony gene in the non-model insect Spodoptera litura. Ebony is crucial to melanin synthesis in insects. By directly injecting Cas9 messenger RNA and ebony-specific guide RNAs into S. litura embryos, we successfully induced a typical ebony-deficient phenotype of deep coloration of the puparium and induction of melanin formation during the pupal stage. Polymerase chain reaction-based genotype analysis demonstrated that various mutations had occurred at the sites targeted in ebony. Our study clearly demonstrates the function of ebony in the puparium coloration and also provides a potentially useful marker gene for functional studies in S. litura as well as other lepidopteran pests.  相似文献   

17.
Summary The regulatory sequences leading to the ovarian and fat body expression of yolk proteins 1 and 2 (YP1 and 2) of Drosophila melanogaster have been characterised in some detail. These genes (yp1 and yp2) share many enhancer elements, and some important regulatory sequences lie within the coding regions. We have begun to investigate the cis-regulation of the gene encoding yolk protein 3 (yp3). We describe a system for P element transformation using the complete and unaltered yp3 gene rather than reporter genes and describe sequences conferring correct expression in the ovary and carcass.  相似文献   

18.
19.
Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana‐like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana‐like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号