首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
  相似文献   

2.
    
Population genetic analysis of invasive populations can provide valuable insights into the source of introductions, pathways for expansion, and their demographic histories. Flathead catfish (Pylodictis olivaris) are a prolific invasive species with high fecundity, long-distance dispersal, and piscivorous feeding habits that can lead to declines in native fish populations. In this study, we analyse the genetics of invasive P. olivaris in the Mid-Atlantic region to assess their connectivity and attempt to reconstruct the history of introduced populations. Based on an assessment across 13 microsatellite loci, P. olivaris from the Susquehanna River system (N = 537), Schuylkill River (N = 33), and Delaware River (N = 1) have low genetic diversity (global Hobs = 0.504), although we detected no evidence of substantial inbreeding (FIS = −0.083 to 0.022). P. olivaris from these different river systems were genetically distinct, suggesting separate introductions. However, population structure was much weaker within each river system and exhibited a pattern of high connectivity, with some evidence of isolation by distance. P. olivaris from the Susquehanna and Schuylkill rivers showed evidence for recent genetic bottlenecks, and demographic models were consistent with historical records, which suggest that populations were established by recent founder events consisting of a small number of individuals. Our results show the risk posed by small introductions of P. olivaris, which can spread widely once a population is established, and highlight the importance of prevention and sensitive early detection methods to prevent the spread of P. olivaris in the future.  相似文献   

3.
    
The simultaneous analysis of intra‐ and interspecies variation is challenging mainly because our knowledge about patterns of polymorphisms where both intra‐ and interspecies samples coexist is limited. In this study, we present CoMuS (Coalescent of Multiple Species), a multispecies coalescent software that can simulate intra‐ and interspecies polymorphisms. CoMuS supports a variety of speciation models and demographic scenarios related to the history of each species. In CoMuS, speciation can be accompanied by either instant or gradual isolation between sister species. Sampling may also occur in the past, and thus, we can study simultaneously extinct and extant species. Our software supports both the infinite‐ and the finite‐site model, with substitution rate heterogeneity among sites and a user‐defined proportion of invariable sites. We demonstrate the usage of CoMuS in various applications: species delimitation, software testing, model selection and parameter inference involving present‐day and ancestral samples, comparison between gradual and instantaneous isolation models, estimation of speciation time between human and chimpanzee using both intra‐ and interspecies variation. We expect that CoMuS will be particularly useful for studies where species have been separated recently from their common ancestor and phenomena such as incomplete lineage sorting or introgression still occur.  相似文献   

4.
    
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.  相似文献   

5.
Lye GC  Lepais O  Goulson D 《Molecular ecology》2011,20(14):2888-2900
Four British bumblebee species (Bombus terrestris, Bombus hortorum, Bombus ruderatus and Bombus subterraneus) became established in New Zealand following their introduction at the turn of the last century. Of these, two remain common in the United Kingdom (B. terrestris and B. hortorum), whilst two (B. ruderatus and B. subterraneus) have undergone marked declines, the latter being declared extinct in 2000. The presence of these bumblebees in New Zealand provides an unique system in which four related species have been isolated from their source population for over 100 years, providing a rare opportunity to examine the impacts of an initial bottleneck and introduction to a novel environment on their population genetics. We used microsatellite markers to compare modern populations of B. terrestris, B. hortorum and B. ruderatus in the United Kingdom and New Zealand and to compare museum specimens of British B. subterraneus with the current New Zealand population. We used approximate Bayesian computation to estimate demographic parameters of the introduction history, notably to estimate the number of founders involved in the initial introduction. Species-specific patterns derived from genetic analysis were consistent with the predictions based on the presumed history of these populations; demographic events have left a marked genetic signature on all four species. Approximate Bayesian analyses suggest that the New Zealand population of B. subterraneus may have been founded by as few as two individuals, giving rise to low genetic diversity and marked genetic divergence from the (now extinct) UK population.  相似文献   

6.
    
Emerging pathogens constitute a severe threat for human health and biodiversity. Determining the status (native or non‐native) of emerging pathogens, and tracing back their spatio‐temporal dynamics, is crucial to understand the eco‐evolutionary factors promoting their emergence, to control their spread and mitigate their impacts. However, tracing back the spatio‐temporal dynamics of emerging wildlife pathogens is challenging because (i) they are often neglected until they become sufficiently abundant and pose socio‐economical concerns and (ii) their geographical range is often little known. Here, we combined classical population genetics tools and approximate Bayesian computation (i.e. ABC) to retrace the dynamics of Tracheliastes polycolpus, a poorly documented pathogenic ectoparasite emerging in Western Europe that threatens several freshwater fish species. Our results strongly suggest that populations of T. polycolpus in France emerged from individuals originating from a unique genetic pool that were most likely introduced in the 1920s in central France. From this initial population, three waves of colonization occurred into peripheral watersheds within the next two decades. We further demonstrated that populations remained at low densities, and hence undetectable, during 10 years before a major demographic expansion occurred, and before its official detection in France. These findings corroborate and expand the few historical records available for this emerging pathogen. More generally, our study demonstrates how ABC can be used to determine the status, reconstruct the colonization history and infer key evolutionary parameters of emerging wildlife pathogens with low data availability, and for which samples from the putative native area are inaccessible.  相似文献   

7.
    
The establishment and spread of aquatic invasive species are ecologically and economically harmful and a source of conservation concern internationally. Processes of species invasion have traditionally been inferred from observational data of species presence/absence and relative abundance. However, genetic‐based approaches can provide valuable sources of inference. Restriction site‐associated DNA sequencing was used to identify and genotype single nucleotide polymorphism (SNP) loci for Round Gobies (Neogobius melanostomus) (N = 440) from 18 sampling locations in the Great Lakes and in three Michigan, USA, drainages (Flint, Au Sable, and Cheboygan River basins). Sampled rivers differed in size, accessibility, and physical characteristics including man‐made dispersal barriers. Population levels of genetic diversity and interpopulation variance in SNP allele frequency were used in coalescence‐based approximate Bayesian computation (ABC) to statistically compare models representing competing hypotheses regarding source population, postcolonization dispersal, and demographic history in the Great Lakes and inland waters. Results indicate different patterns of colonization across the three drainages. In the Flint River, models indicate a strong population bottleneck (<3% of contemporary effective population size) and a single founding event from Saginaw Bay led to the colonization of inland river segments. In the Au Sable River, analyses could not distinguish potential source populations, but supported models indicated multiple introductions from one source population. In the Cheboygan River, supported models indicated that colonization likely proceeded from east (Lake Huron source) to west among inland locales sampled in the system. Despite the recent occupancy of Great Lakes and inland habitats, large numbers of loci analyzed in an ABC framework enable statistically supported identification of source populations and reconstruction of the direction of inland spread and demographic history following establishment. Information from analyses can direct management actions to limit the spread of invasive species from identified sources and most probable vectors into additional inland aquatic habitats.  相似文献   

8.
    
With novel developments in sequencing technologies, time‐sampled data are becoming more available and accessible. Naturally, there have been efforts in parallel to infer population genetic parameters from these data sets. Here, we compare and analyse four recent approaches based on the Wright–Fisher model for inferring selection coefficients (s) given effective population size (Ne), with simulated temporal data sets. Furthermore, we demonstrate the advantage of a recently proposed approximate Bayesian computation (ABC)‐based method that is able to correctly infer genomewide average Ne from time‐serial data, which is then set as a prior for inferring per‐site selection coefficients accurately and precisely. We implement this ABC method in a new software and apply it to a classical time‐serial data set of the medionigra genotype in the moth Panaxia dominula. We show that a recessive lethal model is the best explanation for the observed variation in allele frequency by implementing an estimator of the dominance ratio (h).  相似文献   

9.
    
Understanding the distribution of genetic diversity in the light of past demographic events linked with climatic shifts will help to forecast evolutionary trajectories of ecosystems within the current context of climate change. In this study, mitochondrial sequences and microsatellite loci were analysed using traditional population genetic approaches together with Bayesian dating and the more recent approximate Bayesian computation scenario testing. The genetic structure and demographic history of a commercial fish, the black scorpionfish, Scorpaena porcus, was investigated throughout the Mediterranean and Black Seas. The results suggest that the species recently underwent population expansions, in both seas, likely concomitant with the warming period following the Last Glacial Maximum, 20 000 years ago. A weak contemporaneous genetic differentiation was identified between the Black Sea and the Mediterranean Sea. However, the genetic diversity was similar for populations of the two seas, suggesting a high number of colonizers entered the Black Sea during the interglacial period and/or the presence of a refugial population in the Black Sea during the glacial period. Finally, within seas, an east/west genetic differentiation in the Adriatic seems to prevail, whereas the Black Sea does not show any structured spatial genetic pattern of its population. Overall, these results suggest that the Black Sea is not that isolated from the Mediterranean, and both seas revealed similar evolutionary patterns related to climate change and changes in sea level.  相似文献   

10.
    
Plant‐parasitic nematodes (PPNs) threaten crop production worldwide. Yet few studies have examined their intraspecific genetic diversity or patterns of invasion, critical data for managing the spread of these cryptic pests. The sugar beet nematode Heterodera schachtii, a global invader that parasitizes over 200 plant species, represents a model for addressing important questions about the invasion genetics of PPNs. Here, a phylogeographic study using 15 microsatellite markers was conducted on 231 H. schachtii individuals sampled from four continents, and invasion history was reconstructed through an approximate Bayesian computation approach, with emphasis on the origin of newly discovered populations in Korea. Multiple analyses confirmed the existence of cryptic lineages within this species, with the Korean populations comprising one group (group 1) and the populations from Europe, Australia, North America, and western Asia comprising another (group 2). No multilocus genotypes were shared between the two groups, and large genetic distance was inferred between them. Population subdivision was also revealed among the populations of group 2 in both population comparison and STRUCTURE analyses, mostly due to different divergent times between invasive and source populations. The Korean populations showed substantial genetic homogeneity and likely originated from a single invasion event. However, none of the other studied populations were implicated as the source. Further studies with additional populations are needed to better describe the distribution of the potential source population for the East Asian lineage.  相似文献   

11.
    
Approximate Bayesian computation (ABC) is widely used to infer demographic history of populations and species using DNA markers. Genomic markers can now be developed for nonmodel species using reduced representation library (RRL) sequencing methods that select a fraction of the genome using targeted sequence capture or restriction enzymes (genotyping‐by‐sequencing, GBS). We explored the influence of marker number and length, knowledge of gametic phase, and tradeoffs between sample size and sequencing depth on the quality of demographic inferences performed with ABC. We focused on two‐population models of recent spatial expansion with varying numbers of unknown parameters. Performing ABC on simulated data sets with known parameter values, we found that the timing of a recent spatial expansion event could be precisely estimated in a three‐parameter model. Taking into account uncertainty in parameters such as initial population size and migration rate collectively decreased the precision of inferences dramatically. Phasing haplotypes did not improve results, regardless of sequence length. Numerous short sequences were as valuable as fewer, longer sequences, and performed best when a large sample size was sequenced at low individual depth, even when sequencing errors were added. ABC results were similar to results obtained with an alternative method based on the site frequency spectrum (SFS) when performed with unphased GBS‐type markers. We conclude that unphased GBS‐type data sets can be sufficient to precisely infer simple demographic models, and discuss possible improvements for the use of ABC with genomic data.  相似文献   

12.
Tarebia granifera is a freshwater/estuarine gastropod invading many tropical and sub-tropical areas around the world. This snail is native to southeast Asia and was accidentally introduced into South Africa during the last decade. The current study investigated shallow-water benthic assemblages of different invaded and uninvaded localities across locations spanning a large range of environmental conditions in the iSimangaliso Wetland Park. Using a correlation-based approach, we found that native benthic assemblages were more closely associated with environmental conditions than with densities of T. granifera. However, there were significant negative correlations between T. granifera abundance and Shannon Diversity at two of the invaded locations. This alien species has successfully invaded, and become dominant in, different types of water bodies with different assemblage compositions and physico-chemical characteristics, ranging from freshwater ponds to saline estuaries and lakes. The current data set is presented as an essential baseline for future studies. It is recommended that future work focuses on specific localities, in order to determine if changes in diversity are driven by non-native species or by other disturbances (e.g., climate change).  相似文献   

13.
    
Exotic forest insects and their symbionts pose an increasing threat to forest health. This is apparently true for the red turpentine beetle (Dendroctonus valens), which was unintentionally introduced to China, where the beetle has killed millions of healthy native pine trees. Previous population genetics studies that used cytochrome oxidase I as a marker concluded that the source of D. valens in China was western North America. In contrast, surveys of fungi associated with D. valens demonstrated that more fungal species are shared between China and eastern North America than between China and western North America, suggesting that the source population of D. valens could be eastern North America. In this study, we used microsatellite markers to determine population structure of D. valens in North America as well as the source population of the beetle in China. The analyses revealed that four genetically distinct populations (herein named the West, Central, Northeast and Mexico) represent the native range of D. valens. Clustering analyses and a simulation‐based approximate Bayesian computation (ABC) approach supported the hypothesis that western North America is the source of the invasive D. valens population. This study provides a demonstration of non‐congruence between patterns inferred by studies on population genetics and symbiont assemblages in an invasive bark beetle.  相似文献   

14.
The estimation of effective population size from one sample of genotypes has been problematic because most estimators have been proven imprecise or biased. We developed a web-based program, onesamp that uses approximate Bayesian computation to estimate effective population size from a sample of microsatellite genotypes. onesamp requires an input file of sampled individuals' microsatellite genotypes along with information about several sampling and biological parameters. onesamp provides an estimate of effective population size, along with 95% credible limits. We illustrate the use of onesamp with an example data set from a re-introduced population of ibex Capra ibex.  相似文献   

15.
The analysis of genetic variation to estimate demographic and historical parameters and to quantitatively compare alternative scenarios recently gained a powerful and flexible approach: the Approximate Bayesian Computation (ABC). The likelihood functions does not need to be theoretically specified, but posterior distributions can be approximated by simulation even assuming very complex population models including both natural and human‐induced processes. Prior information can be easily incorporated and the quality of the results can be analysed with rather limited additional effort. ABC is not a statistical analysis per se, but rather a statistical framework and any specific application is a sort of hybrid between a simulation and a data‐analysis study. Complete software packages performing the necessary steps under a set of models and for specific genetic markers are already available, but the flexibility of the method is better exploited combining different programs. Many questions relevant in ecology can be addressed using ABC, but adequate amount of time should be dedicated to decide among alternative options and to evaluate the results. In this paper we will describe and critically comment on the different steps of an ABC analysis, analyse some of the published applications of ABC and provide user guidelines.  相似文献   

16.
17.
    
Hybridization between wild and domesticated organisms is a worldwide conservation issue. In the Jura Mountains, threatened European wildcats (Felis silvestris) have been demographically spreading for approximately the last 50 years, but this recovery is coupled with hybridization with domestic cats (Felis catus). Here, we project the pattern of future introgression using different spatially explicit scenarios to model the interactions between the two species, including competition and different population sizes. We project the fast introgression of domestic cat genes into the wildcat population under all scenarios if hybridization is not severely restricted. If the current hybridization rate and population sizes remain unchanged, we expect the loss of genetic distinctiveness between wild and domestic cats at neutral nuclear, mitochondrial and Y chromosome markers in one hundred years. However, scenarios involving a competitive advantage for wildcats and a future increase in the wildcat population size project a slower increase in introgression. We recommend that future studies assess the fitness of these hybrids and better characterize their ecological niche and their ecological interactions with parental species to elucidate effective conservation measures.  相似文献   

18.
Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human‐modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make‐up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out‐of‐Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti.  相似文献   

19.
    
Population genetic data from multiple taxa can address comparative phylogeographic questions about community‐scale response to environmental shifts, and a useful strategy to this end is to employ hierarchical co‐demographic models that directly test multi‐taxa hypotheses within a single, unified analysis. This approach has been applied to classical phylogeographic data sets such as mitochondrial barcodes as well as reduced‐genome polymorphism data sets that can yield 10,000s of SNPs, produced by emergent technologies such as RAD‐seq and GBS. A strategy for the latter had been accomplished by adapting the site frequency spectrum to a novel summarization of population genomic data across multiple taxa called the aggregate site frequency spectrum (aSFS), which potentially can be deployed under various inferential frameworks including approximate Bayesian computation, random forest and composite likelihood optimization. Here, we introduce the r package multi‐dice , a wrapper program that exploits existing simulation software for flexible execution of hierarchical model‐based inference using the aSFS, which is derived from reduced genome data, as well as mitochondrial data. We validate several novel software features such as applying alternative inferential frameworks, enforcing a minimal threshold of time surrounding co‐demographic pulses and specifying flexible hyperprior distributions. In sum, multi‐dice provides comparative analysis within the familiar R environment while allowing a high degree of user customization, and will thus serve as a tool for comparative phylogeography and population genomics.  相似文献   

20.
  总被引:1,自引:0,他引:1  
The conservation of threatened species must be underpinned by phylogeographic knowledge. This need is epitomized by the freshwater fish Carassius carassius, which is in decline across much of its European range. Restriction site‐associated DNA sequencing (RADseq) is increasingly used for such applications; however, RADseq is expensive, and limitations on sample number must be weighed against the benefit of large numbers of markers. This trade‐off has previously been examined using simulation studies; however, empirical comparisons between these markers, especially in a phylogeographic context, are lacking. Here, we compare the results from microsatellites and RADseq for the phylogeography of C. carassius to test whether it is more advantageous to genotype fewer markers (microsatellites) in many samples, or many markers (SNPs) in fewer samples. These data sets, along with data from the mitochondrial cytochrome b gene, agree on broad phylogeographic patterns, showing the existence of two previously unidentified C. carassius lineages in Europe: one found throughout northern and central‐eastern European drainages and a second almost exclusively confined to the Danubian catchment. These lineages have been isolated for approximately 2.15 m years and should be considered separate conservation units. RADseq recovered finer population structure and stronger patterns of IBD than microsatellites, despite including only 17.6% of samples (38% of populations and 52% of samples per population). RADseq was also used along with approximate Bayesian computation to show that the postglacial colonization routes of C. carassius differ from the general patterns of freshwater fish in Europe, likely as a result of their distinctive ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号