首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non‐canonical mechanisms may be employed. The rod‐shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient Escherichia coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia.  相似文献   

2.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

3.
4.
During division of Gram‐negative bacteria, invagination of the cytoplasmic membrane and inward growth of the peptidoglycan (PG) are followed by the cleavage of connective septal PG to allow cell separation. This PG splitting process requires temporal and spatial regulation of cell wall hydrolases. In Escherichia coli, LytM factors play an important role in PG splitting. Here we identify and characterize a member of this family (DipM) in Caulobacter crescentus. Unlike its E. coli counterparts, DipM is essential for viability under fast‐growth conditions. Under slow‐growth conditions, the ΔdipM mutant displays severe defects in cell division and FtsZ constriction. Consistent with its function in division, DipM colocalizes with the FtsZ ring during the cell cycle. Mutagenesis suggests that the LytM domain of DipM is essential for protein function, despite being non‐canonical. DipM also carries two tandems of the PG‐binding LysM domain that are sufficient for FtsZ ring localization. Localization and fluorescence recovery after photobleaching microscopy experiments suggest that DipM localization is mediated, at least in part, by the ability of the LysM tandems to distinguish septal, multilayered PG from non‐septal, monolayered PG.  相似文献   

5.
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans‐envelope Tol–Pal complex, a widely conserved component of the cell envelope of Gram‐negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol–Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol–Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol–Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co‐ordinate cell division and segregation of the chemosensory machinery.  相似文献   

6.
Trigger factor (TF) is the first molecular chaperone interacting cotranslationally with virtually all nascent polypeptides synthesized by the ribosome in bacteria. Thermal adaptation of chaperone function was investigated in TFs from the Antarctic psychrophile Pseudoalteromonas haloplanktis, the mesophile Escherichia coli and the hyperthermophile Thermotoga maritima. This series covers nearly all temperatures encountered by bacteria. Although structurally homologous, these TFs display strikingly distinct properties that are related to the bacterial environmental temperature. The hyperthermophilic TF strongly binds model proteins during their folding and protects them from heat‐induced misfolding and aggregation. It decreases the folding rate and counteracts the fast folding rate imposed by high temperature. It also functions as a carrier of partially folded proteins for delivery to downstream chaperones ensuring final maturation. By contrast, the psychrophilic TF displays weak chaperone activities, showing that these functions are less important in cold conditions because protein folding, misfolding and aggregation are slowed down at low temperature. It efficiently catalyses prolyl isomerization at low temperature as a result of its increased cellular concentration rather than from an improved activity. Some chaperone properties of the mesophilic TF possibly reflect its function as a cold shock protein in E. coli.  相似文献   

7.
Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane‐embedded sub‐proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re‐annotation of the theoretical E. coli IMP regarding the sub‐cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC‐MS/MS analysis, we experimentally identified ~45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label‐free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over‐synthesizing the membrane‐embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria.  相似文献   

8.
9.
Protein folding is an essential prerequisite for proteins to execute nearly all cellular functions. There is a growing demand for a simple and robust method to investigate protein folding on a large‐scale under the same conditions. We previously developed a global folding assay system, in which proteins translated using an Escherichia coli‐based cell‐free translation system are centrifuged to quantitate the supernatant fractions. Although the assay is based on the assumption that the supernatants contain the folded native states, the supernatants also include nonnative unstructured proteins. In general, proteases recognize and degrade unstructured proteins, and thus we used a protease to digest the unstructured regions to monitor the folding status. The addition of Lon protease during the translation of proteins unmasked subfractions, not only in the soluble fractions but also in the aggregation‐prone fractions. We translated ~90 E. coli proteins in the protease‐inclusion assay, in the absence and presence of chaperones. The folding assay, which sheds light on the molecular mechanisms underlying the aggregate formation and the chaperone effects, can be applied to a large‐scale analysis.  相似文献   

10.
Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA‐8 (PhaPAz) had an unexpected growth‐promoting and stress‐protecting effect in Escherichia coli, suggesting it could have chaperone‐like activities. In this work, in vitro and in vivo experiments were performed in order to investigate this possibility. PhaPAz was shown to prevent in vitro thermal aggregation of the model protein citrate synthase and to facilitate the refolding process of this enzyme after chemical denaturation. Microscopy techniques were used to analyse the subcellular localization of PhaPAz in E. coli strains and to study the role of PhaPAz in in vivo protein folding and aggregation. PhaPAz was shown to colocalize with inclusion bodies of PD, a protein that aggregates when overexpressed. A reduction in the number of inclusion bodies of PD was observed when it was coexpressed with PhaPAz or with the known chaperone GroELS. These results demonstrate that PhaPAz has chaperone‐like functions both in vitro and in vivo in E. coli recombinants, and suggests that phasins could have a general protective role in natural polyhydroxyalkanoate producers.  相似文献   

11.
Carabid beetles form rich and abundant communities in arable landscapes. Their generalist feeding behaviour and similar environmental requirements raise questions about the mechanisms allowing the coexistence of such species‐rich assemblages. We hypothesized that subtle niche partitioning comes into play on spatial, temporal, or trophic basis. To test this, we performed experiments and made observations on the behaviour of two sympatric carabid species of similar size and life cycle, Bembidion quadrimaculatum L. and Phyla obtusa Audinet‐Serville (both Coleoptera: Carabidae: Bembidiini). We compared plant climbing behaviour, daily activity patterns, and trophic preferences between the two carabid species under laboratory conditions. Whereas no clear difference in trophic preference was observed, our results suggest temporal niche differentiation at the nychthemeron scale (a period of 24 consecutive hours), with one of the species being more diurnal and the other more nocturnal, and spatial differentiation in their habitat use at the plant stratum scale. Intra‐specific variation suggests that micro‐scale spatio‐temporal niche differentiation could be mediated by behavioural plasticity in these two carabid species. We speculate that such behavioural plasticity may provide carabid beetles with a high adaptive potential in intensively managed agricultural areas.  相似文献   

12.
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well‐established non‐centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin‐ and RNA‐binding proteins. In total, we assigned novel centrosome‐related functions to 24 proteins and confirmed 13 of these in human cells.  相似文献   

14.
The interaction of the Bacillus subtilis protein Mistic with the bacterial membrane and its role in promoting the overexpression of other membrane proteins are still matters of debate. In this study, we aimed to determine whether individual helical fragments of Mistic are sufficient for its interaction with membranes in vivo and in vitro. To this end, fragments encompassing each of Mistic's helical segments and combinations of them were produced as GFP‐fusions, and their cellular localization was studied in Escherichia coli. Furthermore, peptides corresponding to the four helical fragments were synthesized by solid‐phase peptide synthesis, and their ability to acquire secondary structure in a variety of lipids and detergents was studied by circular dichroism spectroscopy. Both types of experiments demonstrate that the third helical fragment of Mistic interacts only with LDAO micelles but does not partition into lipid bilayers. Interestingly, the other three helices interact with membranes in vivo and in vitro. Nevertheless, all of these short sequences can replace full‐length Mistic as N‐terminal fusions to achieve overexpression of a human G‐protein‐coupled receptor in E. coli, although with different effects on quantity and quality of the protein produced. A bioinformatic analysis of the Mistic family expanded the number of homologs from 4 to 20, including proteins outside the genus Bacillus. This information allowed us to discover a highly conserved Shine‐Dalgarno sequence in the operon mstX‐yugO that is important for downstream translation of the potassium ion channel yugO.  相似文献   

15.
The reduced genomes of the apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are actively translated and antibiotic‐mediated translation inhibition is detrimental to parasite survival. In order to understand recycling of organellar ribosomes, a critical step in protein translation, we identified ribosome recycling factors (RRF) encoded by the parasite nuclear genome. Targeting of PfRRF1 and PfRRF2 to the apicoplast and mitochondrion respectively was established by localization of leader sequence–GFP fusions. Unlike any RRF characterized thus far, PfRRF2 formed dimers with disulphide interaction(s) and additionally localized in the cytoplasm, thus suggesting adjunct functions for the factor. PfRRF1 carries a large 108‐amino‐acid insertion in the functionally critical hinge region between the head and tail domains of the protein, yet complemented Escherichia coli RRF in the LJ14frrts mutant and disassembled surrogate E. coli 70S ribosomes in the presence of apicoplast‐targeted EF‐G. Recombinant PfRRF2 bound E. coli ribosomes and could split monosomes in the presence of the relevant mitochondrial EF‐G but failed to complement the LJ14frrts mutant. Although proteins comprising subunits of P. falciparum organellar ribosomes are predicted to differ from bacterial and mitoribosomal counterparts, our results indicate that the essential interactions required for recycling are conserved in parasite organelles.  相似文献   

16.
Among the iron‐sulphur cluster assembly proteins encoded by gene cluster iscSUAhscBAfdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron‐sulphur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe‐4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron‐sulphur cluster biogenesis. Here we report that among the iron‐sulphur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) centre in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA‐mediated [4Fe‐4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe‐4S] clusters in dehydratases, but also block the [4Fe‐4S] cluster assembly in proteins by targeting IscA in cells.  相似文献   

17.
d ‐Alanyl‐d ‐alanine carboxypeptidase DacC is important for synthesis and stabilization of the peptidoglycan layer of Escherichia coli. In this work, dacC of E. coli BL21 (DE3) was successfully deleted, and the effects of this deletion on extracellular protein production in E. coli were investigated. The extracellular activities and fluorescence value of recombinant amylase, green fluorescent protein, and α‐galactosidase of the deletion mutants were increased by 82.3, 29.1, and 37.7%, respectively, compared with that of control cells. The outer membrane permeability and intracellular soluble peptidoglycan accumulation of deletion mutant were also enhanced compared with those of control cells, respectively. Based on fluorescence‐assisted cell sorting analyses, we found that the morphology of the E. coli deletion mutant cells was altered compared with that of control cells. Local transparent bulges in the poles of the E. coli mutant with deletion of the dacC gene were found by transmission electron microscopy analysis. These bulges in the poles could explain the improvement in the production of extracellular protein by the E. coli mutant with deletion of the dacC gene. These findings provide important insights into the extracellular production of proteins using E. coli as microbial cell factories.  相似文献   

18.
We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram‐positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12‐transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ~ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram‐positive and Gram‐negative bacteria.  相似文献   

19.
Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein‐disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S‐S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant‐negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single‐player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.  相似文献   

20.
The flagellar motor is an important virulence factor in infection by many bacterial pathogens. Motor function can be modulated by chemotactic proteins and recently appreciated proteins that are not part of the flagellar or chemotaxis systems. How these latter proteins affect flagellar activity is not fully understood. Here, we identified spermidine synthase SpeE as an interacting partner of switch protein FliM in Helicobacter pylori using pull‐down assay and mass spectrometry. To understand how SpeE contributes to flagellar motility, a speE‐null mutant was generated and its motility behavior was evaluated. We found that deletion of SpeE did not affect flagellar formation, but induced clockwise rotation bias. We further determined the crystal structure of the FliM‐SpeE complex at 2.7 Å resolution. SpeE dimer binds to FliM with micromolar binding affinity, and their interaction is mediated through the β1' and β2' region of FliM middle domain. The FliM‐SpeE binding interface partially overlaps with the FliM surface that interacts with FliG and is essential for proper flagellar rotational switching. By a combination of protein sequence conservation analysis and pull‐down assays using FliM and SpeE orthologues in E. coli, our data suggest that FliM‐SpeE association is unique to Helicobacter species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号