首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl‐coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl‐CoA by ATP‐dependent or ‐independent benzoyl‐CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2‐naphthoyl‐CoA reductase was purified from extracts of the naphthalene‐degrading, sulphidogenic enrichment culture N47. The oxygen‐tolerant enzyme dearomatized the non‐activated ring of 2‐naphthoyl‐CoA by a four‐electron reduction to 5,6,7,8‐tetrahydro‐2‐naphthoyl‐CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin‐containing ‘old yellow enzyme’ family. NCR contained FAD, FMN, and an iron‐sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2‐naphthoyl‐CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl‐CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl‐CoA reductases.  相似文献   

2.
The 2‐naphthoyl‐coenzyme A (NCoA) reductase (NCR) is so far the only characterized enzyme involved in the anaerobic degradation of the environmentally relevant polycyclic aromatic hydrocarbons. The old yellow enzyme (OYE) family member apparently reduced the nonactivated naphthyl ring to 5,6,7,8‐tetrahydro‐2‐napthoyl‐CoA (THNCoA). In this work, the candidate genes of three NCRs from the sulphate‐reducing, naphthalene‐degrading N47 and NaphS2 cultures were expressed in Escherichia coli. The isolated products contained flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) a [4Fe‐4S] cluster and catalyzed only the two‐electron reduction of NCoA to 5,6‐dihydro‐2‐naphthoyl‐CoA (5,6‐DHNCoA) at a very negative E°′ = ?493 mV. All NCRs exhibited high NCoA‐forming DHNCoA oxidase activities that are proposed to be involved in oxygen‐detoxification during naphthalene degradation. Extracts of N47 and NaphS2 catalyzed the reduction of 5,6‐DHNCoA to THNCoA. Genes putatively coding for 5,6‐DHNCR from N47 and NaphS2 were heterologously expressed in E. coli. The enriched enzyme products specifically catalyzed the reduction of 5,6‐DHNCoA to THNCoA at E°′ = ?375 mV. With the three NCRs and two 5,6‐DHNCRs, five OYEs have been characterized that are involved in the reduction of the nonsubstituted naphthyl‐ring system; these unprecedented enzymatic reactions expand our knowledge of the functional diversity of OYE.  相似文献   

3.
Polycyclic aromatic hydrocarbons are among the most hazardous environmental pollutants. However, in contrast to aerobic degradation, the respective degradation pathways in anaerobes are greatly unknown which has so far prohibited many environmental investigations. In this work, we studied the enzymatic dearomatization reactions involved in the degradation of the PAH model compounds naphthalene and 2‐methylnaphthalene in the sulfate‐reducing enrichment culture N47. Cell extracts of N47 grown on naphthalene catalysed the sodium dithionite‐dependent four‐electron reduction of the key intermediate 2‐naphthoyl‐coenzyme A (NCoA) to 5,6,7,8‐tetrahydro‐2‐naphthoyl‐CoA (THNCoA). The NCoA reductase activity was independent of ATP and was, surprisingly, not sensitive to oxygen. In cell extracts in the presence of various electron donors the product THNCoA was further reduced by a two‐electron reaction to most likely a conjugated hexahydro‐2‐naphthoyl‐CoA isomer (HHNCoA). The reaction assigned to THNCoA reductase strictly depended on ATP and was oxygen‐sensitive with a half‐life time between 30 s and 1 min when exposed to air. The rate was highest with NADH as electron donor. The results indicate that two novel and completely different dearomatizing ring reductases are involved in anaerobic naphthalene degradation. While the THNCoA reducing activity shows some properties of ATP‐dependent class I benzoyl‐CoA reductases, NCoA reduction appears to be catalysed by a previously unknown class of dearomatizing aryl‐carboxyl‐CoA reductases.  相似文献   

4.
The cyclohexane derivative cis‐2‐(carboxymethyl)cyclohexane‐1‐carboxylic acid [(1R,2R)‐/(1S,2S)‐2‐(carboxymethyl)cyclohexane‐1‐carboxylic acid] has previously been identified as metabolite in the pathway of anaerobic degradation of naphthalene by sulfate‐reducing bacteria. We tested the corresponding CoA esters of isomers and analogues of this compound for conversion in cell free extracts of the anaerobic naphthalene degraders Desulfobacterium strain N47 and Deltaproteobacterium strain NaphS2. Conversion was only observed for the cis‐isomer, verifying that this is a true intermediate and not a dead‐end product. Mass‐spectrometric analyses confirmed that conversion is performed by an acyl‐CoA dehydrogenase and a subsequent hydratase yielding an intermediate with a tertiary hydroxyl‐group. We propose that a novel kind of ring‐opening lyase is involved in the further catabolic pathway proceeding via pimeloyl‐CoA. In contrast to degradation pathways of monocyclic aromatic compounds where ring‐cleavage is achieved via hydratases, this lyase might represent a new ring‐opening strategy for the degradation of polycyclic compounds. Conversion of the potential downstream metabolites pimeloyl‐CoA and glutaryl‐CoA was proved in cell free extracts, yielding 2,3‐dehydropimeloyl‐CoA, 3‐hydroxypimeloyl‐CoA, 3‐oxopimeloyl‐CoA, glutaconyl‐CoA, crotonyl‐CoA, 3‐hydroxybutyryl‐CoA and acetyl‐CoA as observable intermediates. This indicates a link to central metabolism via β‐oxidation, a non‐decarboxylating glutaryl‐CoA dehydrogenase and a subsequent glutaconyl‐CoA decarboxylase.  相似文献   

5.
The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o-phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ-proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short-lived phthaloyl-CoA by an ATP-dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl-CoA by an UbiD-like phthaloyl-CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate-reducing Desulfobacula toluolica, strain NaphS2, and other δ-proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl-CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl-CoA, the possibly most unstable CoA ester in biology.  相似文献   

6.
The initial reactions in the oxidation of naphthalene by Pseudomonas sp. strain NCIB 9816 involves the enzymatic incorporation of one molecule of oxygen into the aromatic nucleus to form (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. The enzyme catalyzing this reaction, naphthalene dioxygenase, was resolved into three protein components, designated A, B, and C, by DEAE-cellulose chromatography. Incubation of naphthalene with components A, B, and C in the presence of NADH resulted in the formation of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. The ratio of oxygen and NADH utilization to product formation was 1:1:1. NADPH also served as an electron donor for naphthalene oxygenation. However, its activity was less than 50% of that observed with NADH. Component A showed NAD(P)H-cytochrome c reductase activity which was stimulated by the addition of flavin adenine dinucleotide and flavin mononucleotide. A similar stimulation was observed when these flavin nucleotides were added to the naphthalene dioxygenase assay system. These preliminary observations indicate that naphthalene dioxygenase has properties in common with both monooxygenase and dioxygenase multicomponent enzyme systems.  相似文献   

7.
Nitric oxide (NO) and reactive oxygen species (ROS) play key roles in plant immunity. However, the regulatory mechanisms of the production of these radicals are not fully understood. Hypersensitive response (HR) cell death requires the simultaneous and balanced production of NO and ROS. In this study we indentified NbRibA encoding a bifunctional enzyme, guanosine triphosphate cyclohydrolase II/3,4‐dihydroxy‐2‐butanone‐4‐phosphate synthase, which participates in the biosynthesis of flavin, by screening genes related to mitogen‐activated protein kinase‐mediated cell death, using virus‐induced gene silencing. Levels of endogenous riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are important prosthetic groups for several enzymes participating in redox reactions, decreased in NbRibA‐silenced Nicotiana benthamiana. Silencing NbRibA compromised not only HR cell death, but also the NO and ROS production induced by INF1 elicitin and a constitutively active form of NbMEK2 (NbMEK2DD), and also induced high susceptibility to oomycete Phytophthora infestans and ascomycete Colletotrichum orbiculare. Compromised radical production and HR cell death induced by INF1 in NbRibA‐silenced leaves were rescued by adding riboflavin, FMN or FAD. These results indicate that flavin biosynthesis participates in regulating NO and ROS production, and HR cell death.  相似文献   

8.
Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well‐studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal‐ and/or flavin‐containing cofactors, of which many use unprecedented radical mechanisms for C–H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram‐positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl‐coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.  相似文献   

9.
A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.  相似文献   

10.
A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.  相似文献   

11.
Benzoyl-CoA reductases (BCRs) catalyse a key reaction in the anaerobic degradation pathways of monocyclic aromatic substrates, the dearomatization of benzoyl-CoA (BzCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at the negative redox potential limit of diffusible enzymatic substrate/product couples (E°′ = −622 mV). A 1-MDa class II BCR complex composed of the BamBCDEGHI subunits has so far only been isolated from the Fe(III)-respiring Geobacter metallireducens. It is supposed to drive endergonic benzene ring reduction at an active site W-pterin cofactor by flavin-based electron bifurcation. Here, we identified multiple copies of putative genes encoding the structural components of a class II BCR in sulfate reducing, Fe(III)-respiring and syntrophic bacteria. A soluble 950 kDa Bam[(BC)2DEFGHI]2 complex was isolated from extracts of Desulfosarcina cetonica cells grown with benzoate/sulfate. Metal and cofactor analyses together with the identification of conserved binding motifs gave rise to 4 W-pterins, two selenocysteines, six flavin adenine dinucleotides, four Zn, and 48 FeS clusters. The complex exhibited 1,5-dienoyl-CoA-, NADPH- and ferredoxin-dependent oxidoreductase activities. Our results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.  相似文献   

12.
Cells of Pseudomonas sp. strain NCIB 9816, after growth with naphthalene or salicylate, contain a multicomponent enzyme system that oxidizes naphthalene to cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. We purified one of these components to homogeneity and found it to be an iron-sulfur flavoprotein that loses the flavin cofactor during purification. Dialysis against flavin adenine dinucleotide (FAD) showed that the enzyme bound 1 mol of FAD per mol of enzyme protein. The enzyme consisted of a single polypeptide with an apparent molecular weight of 36,300. The purified protein contained 1.8 g-atoms of iron and 2.0 g-atoms of acid-labile sulfur and showed absorption maxima at 278, 340, 420, and 460 nm, with a broad shoulder at 540 nm. The purified enzyme catalyzed the reduction of cytochrome c, dichlorophenolindophenol, Nitro Blue Tetrazolium, and ferricyanide. These activities were enhanced in the presence of added FAD. The ability of the enzyme to catalyze the reduction of the ferredoxin involved in naphthalene reduction and other electron acceptors indicates that it functions as an NAD(P)H-oxidoreductase in the naphthalene dioxygenase system. The results suggest that naphthalene dioxygenase requires two proteins with three redox groups to transfer electrons from NADH to the terminal oxygenase.  相似文献   

13.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

14.
The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)‐dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR‐bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)‐binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD‐ and NADPH‐binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine‐tuned by multiple intermolecular contacts. Proteins 2014; 82:607–619. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Three cytosolic NADPH-dependent flavin-associated proteins (Gox2107, Gox0502, and Gox2684) from Gluconobacter oxydans 621H were overproduced in Escherichia coli, and the recombinant enzymes were purified and characterized. Apparent native molecular masses of 65.2, 78.2, and 78.4 kDa were observed for Gox2107, Gox0502, and Gox2684, corresponding to a trimeric structure for Gox2107 and dimers for Gox0502 and Gox2684. Analysis of flavin content revealed Gox2107 was flavin adenine dinucleotide dependent, whereas Gox0502 and Gox2684 contained flavin mononucleotide. The enzymes were able to reduce vinyl ketones and quinones, reducing the olefinic bond of vinyl ketones as shown by 1H nuclear magnetic resonance. Additionally, Gox0502 and Gox2684 stereospecifically reduced 5S-(+)-carvone to 2R,5S-dihydrocarvone. All enzymes displayed highest activities with 3-butene-2-one and 1,4-naphthoquinone. Gox0502 and Gox2684 displayed a broader substrate spectrum also reducing short-chain α-diketones, whereas Gox2107 was most catalytically efficient.  相似文献   

16.
To investigate the effects of physiological properties on polycyclic aromatic compound (PAH) degradation, the surface tension and emulsification activities, and cell surface hydrophobicity of five PAH-degrading yeast isolates were compared to Saccharomyces cerevisiae from cultures grown with glucose, hexadecane, or naphthalene as carbon sources. The cell surface hydrophobicity values for the five yeast strains were significantly higher than for S. cerevisiae for all culture conditions, although these were highest with hexadecane and naphthalene. Strains with higher hydrophobicity showed higher rates of naphthalene and phenanthrene degradation, indicating that increased cell hydrophobicity might be an important strategy in PAH degradation for the five strains. Emulsification activities increased for all five yeast strains with naphthalene culturing, although no relationship existed between emulsification activity and PAH degradation rate. Surface tensions were not markedly reduced with naphthalene culturing.  相似文献   

17.
The effects of aromatic stacking interactions on the stabilization of reduced flavin adenine dinucleotide (FAD) and substrate/product have been investigated in short-chain acyl-coenzyme A dehydrogenase (SCAD) from Megasphaera elsdenii. Mutations were made at the aromatic residues Phe160 and Tyr366, which flank either face of the noncovalently bound flavin cofactor. The electrochemical properties of the mutants were then measured in the presence and absence of a butyryl-CoA/crotonyl-CoA mixture. Results from these redox studies suggest that the phenylalanine and tyrosine both engage in favorable pi-sigma interactions with the isoalloxazine ring of the flavin to help stabilize formation of the anionic flavin hydroquinone. Disruption of these interactions by replacing either residue with a leucine (F160L and Y366L) causes the midpoint potential for the oxidized/hydroquinone couple (E(ox/hq)) to shift negative by 44-54 mV. The E(ox/hq) value was also found to decrease when aromatic residues containing electron-donating heteroatoms were introduced at the 160 position. Potential shifts of -32 and -43 mV for the F160Y and F160W mutants, respectively, are attributed to increased pi-pi repulsive interactions between the ring systems. This study also provides evidence for thermodynamic regulation of the substrate/product couple in the active site of SCAD. Binding to the wild-type enzyme caused the midpoint potential for the butyryl-CoA/crotonyl-CoA couple (E(BCoA/CCoA)) to shift 14 mV negative, stabilizing the oxidized product. Formation of product was found to be even more favorable in complexes with the F160Y and F160W mutants, suggesting that the electrostatic environment around the flavin plays a role in substrate/product activation.  相似文献   

18.
In the denitrifying bacterium Thauera aromatica, the central intermediate of anaerobic aromatic metabolism, benzoyl-coenzyme A (CoA), is dearomatized by the ATP-dependent benzoyl-CoA reductase to cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA). The dienoyl-CoA is further metabolized by a series of beta-oxidation-like reactions of the so-called benzoyl-CoA degradation pathway resulting in ring cleavage. Recently, evidence was obtained that obligately anaerobic bacteria that use aromatic growth substrates do not contain an ATP-dependent benzoyl-CoA reductase. In these bacteria, the reactions involved in dearomatization and cleavage of the aromatic ring have not been shown, so far. In this work, a characteristic enzymatic step of the benzoyl-CoA pathway in obligate anaerobes was demonstrated and characterized. Dienoyl-CoA hydratase activities were determined in extracts of Geobacter metallireducens (iron reducing), Syntrophus aciditrophicus (fermenting), and Desulfococcus multivorans (sulfate reducing) cells grown with benzoate. The benzoate-induced genes putatively coding for the dienoyl-CoA hydratases in the benzoate degraders G. metallireducens and S. aciditrophicus were heterologously expressed and characterized. Both gene products specifically catalyzed the reversible hydration of dienoyl-CoA to 6-hydroxycyclohexenoyl-CoA (Km, 80 and 35 microM; Vmax, 350 and 550 micromol min(-1) mg(-1), respectively). Neither enzyme had significant activity with cyclohex-1-ene-1-carbonyl-CoA or crotonyl-CoA. The results suggest that benzoyl-CoA degradation proceeds via dienoyl-CoA and 6-hydroxycyclohexanoyl-CoA in strictly anaerobic bacteria. The steps involved in dienoyl-CoA metabolism appear identical in all nonphotosynthetic anaerobic bacteria, although totally different benzene ring-dearomatizing enzymes are present in facultative and obligate anaerobes.  相似文献   

19.
Ukaegbu UE  Henery S  Rosenzweig AC 《Biochemistry》2006,45(34):10191-10198
Methane monooxygenase (MMO) enzymes catalyze the oxidation of methane to methanol in methanotrophic bacteria. Several strains of methanotrophs, including Methylococcus capsulatus (Bath), express a membrane-bound or particulate MMO (pMMO) at high copper-to-biomass ratios and a soluble MMO (sMMO) form when copper is limited. The mechanism of this "copper switch" is not understood. The mmoS gene, located downstream of the sMMO operon, encodes a sensor protein that is part of a two-component signaling system and has been proposed to play a role in the copper switch. MmoS from M. capsulatus (Bath) has been cloned, expressed, and purified. The purified protein is a tetramer of molecular mass 480 kDa. Optical spectra indicate that MmoS contains a flavin cofactor, identified as flavin adenine dinucleotide (FAD) by fluorescence spectroscopy and chromatographic analysis. The redox potential of the MmoS-bound FAD, which binds within the N-terminal PAS-PAC domains, is -290 +/- 2 mV at pH 8.0 and 25 degrees C. Despite extensive efforts, MmoS could not be loaded with Cu(I) or Cu(II), indicating that MmoS does not sense copper directly. These data suggest that MmoS functions as a redox sensor and provide new insight into the copper-mediated regulation of sMMO expression.  相似文献   

20.
Gisi MR  Xun L 《Journal of bacteriology》2003,185(9):2786-2792
Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were separately produced in Escherichia coli, purified, and characterized. TftC was an NADH:flavin adenine dinucleotide (FAD) oxidoreductase. A C-terminally His-tagged fusion TftC used NADH to reduce either FAD or flavin mononucleotide (FMN) but did not use NADPH or riboflavin as a substrate. Kinetic and binding property analysis showed that FAD was a better substrate than FMN. TftD was a reduced FAD (FADH(2))-utilizing monooxygenase, and FADH(2) was supplied by TftC. It converted 2,4,5-trichlorophenol to 2,5-dichloro-p-quinol and then to 5-chlorohydroxyquinol but converted 2,4,6-trichlorophenol only to 2,6-dichloro-p-quinol as the final product. TftD interacted with FADH(2) and retarded its rapid oxidation by O(2). A spectrum of possible TftD-bound FAD-peroxide was identified, indicating that the peroxide is likely the active oxygen species attacking the aromatic substrates. The reclassification of the two enzymes further supports the new discovery of FADH(2)-utilizing enzymes, which have homologues in the domains Bacteria and Archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号