首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Y‐chromosome markers are important tools for studying male‐specific gene flow within and between populations, hybridization patterns and kinship. However, their use in non‐human mammals is often hampered by the lack of Y‐specific polymorphic markers. We identified new male‐specific short tandem repeats (STRs) in Sus scrofa using the available genome sequence. We selected four polymorphic loci (5–10 alleles per locus), falling in one duplicated and two single‐copy regions. A total of 32 haplotypes were found by screening 211 individuals from eight wild boar populations across Europe and five domestic pig populations. European wild boar were characterized by significantly higher levels of haplotype diversity compared to European domestic pigs (HD = 0.904 ± 0.011 and HD = 0.491 ± 0.077 respectively). Relationships among STR haplotypes were investigated by combining them with single nucleotide polymorphisms at two linked genes (AMELY and UTY) in a network analysis. A differentiation between wild and domestic populations was observed (FST = 0.229), with commercial breeds sharing no Y haplotype with the sampled wild boar. Similarly, a certain degree of geographic differentiation was observed across Europe, with a number of local private haplotypes and high diversity in northern populations. The described Y‐chromosome markers can be useful to track male inheritance and gene flow in wild and domestic populations, promising to provide insights into evolutionary and population genetics in Sus scrofa.  相似文献   

2.
Numerous studies have been conducted to investigate genetic diversity, origins and domestication of donkey using autosomal microsatellites and the mitochondrial genome, whereas the male‐specific region of the Y chromosome of modern donkeys is largely uncharacterized. In the current study, 14 published equine Y chromosome‐specific microsatellites (Y‐STR) were investigated in 395 male donkey samples from China, Egypt, Spain and Peru using fluorescent labeled microsatellite markers. The results showed that seven Y‐STRs—EcaYP9, EcaYM2, EcaYE2, EcaYE3, EcaYNO1, EcaYNO2 and EcaYNO4—were male specific and polymorphic, showing two to eight alleles in the donkeys studied. A total of 21 haplotypes corresponding to three haplogroups were identified, indicating three independent patrilines in domestic donkey. These markers are useful for the study the Y‐chromosome diversity and population genetics of donkeys in Africa, Europe, South America and China.  相似文献   

3.
The Mongolian horse represents one of the most ancient extant horse populations. In this study we determined the male‐specific region of the Y chromosome (MSY) haplotype distribution in 60 Chinese Mongolian horses representing five distinct populations. Cosmopolitan male lineages were predominant in horses from one improved (Sanhe), one Chinese Mongolian subtype (Baicha Iron Hoof) and one indigenous (Abaga Black) population. In contrast, autochthonous Y chromosome diversity was evident among the two landrace populations (Wushen and Wuzhumuqin), as the majority of their MSY haplotypes were situated at root nodes in a network. Our results also suggest gene flow between Chinese Mongolian and Arabian horses, as an appreciable number of Wuzhumuqin horses carried haplotypes that are typically observed in Arabian horses. Although most horses carried modern haplotypes as a direct result of recent breed improvement, authentic Chinese Mongolian horses retain an ancient signature of paternal lineages that has not previously been described in extant horse populations. Therefore, further characterization of MSY variation in these populations will be important for the discovery of lost diversity in modern domestic horses and also for understanding the evolutionary history of equine paternal lineages.  相似文献   

4.
The analysis of mitochondrial DNA sequences has for a long time been the most extensively used genetic tool for phylogenetic, phylogeographic and population genetic studies. Since this approach only considers female lineages, it tends to give a biased picture of the population history. The use of protein polymorphisms and microsatellites has helped to obtain a more unbiased view, but complementing population genetic studies with Y chromosome markers could clarify the role of each sex in natural processes. In this study we analysed genetic variability at four microsatellite loci on the canid Y chromosome. With these four microsatellites we constructed haplotypes and used them to study the genetic status of the Scandinavian wolf population, a population that now contains 60-70 animals but was thought to have been extinct in the 1970s. In a sample of 100 male wolves from northern Europe we found 17 different Y chromosome haplotypes. Only two of these were found in the current Scandinavian population. This indicates that there should have been at least two males involved in the founding of the Scandinavian wolf population after the bottleneck in the 1970s. The two Scandinavian Y chromosome haplotypes were not found elsewhere in northern Europe, which indicates low male gene flow between Scandinavia and the neighbouring countries.  相似文献   

5.
Humans have shaped the population history of the horse ever since domestication about 5500 years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y‐chromosomal phylogeny of modern horses based on 1.46 Mb of the male‐specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 ± 872 years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages.  相似文献   

6.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

7.
Y‐chromosome‐specific haplotypes (Y‐haplotypes) constructed using single nucleotide polymorphisms (Y‐SNPs) in the MSY (male‐specific region of the Y‐chromosome) are valuable in population genetic studies. But sequence variants in the yak MSY region have been poorly characterized so far. In this study, we screened a total of 16 Y‐chromosome‐specific gene segments from the ZFY, SRY, UTY, USP9Y, AMELY and OFD1Y genes to identify Y‐SNPs in domestic yaks. Six novel Y‐SNPs distributed in the USP9Y (g.223C>T), UTY19 (g.158A>C and g.169C>T), AMELY2 (g.261C>T), OFD1Y9 (g.165A>G) and SRY4 (g.104G>A) loci, which can define three Y‐haplotypes (YH1, YH2 and YH3) in yaks, were discovered. YH1 was the dominant and presumably most ancient haplotype based on the comparison of UTY19 locus with other bovid species. Interestingly, we found informative UTY19 markers (g.158A>C and g.169C>T) that can effectively distinguish the three yak Y‐haplotypes. The nucleotide diversity was 1.7 × 10?4 ± 0.3 × 10?4, indicating rich Y‐chromosome diversity in yaks. We identified two highly divergent lineages (YH1 and YH2 vs. YH3) that share similar frequencies (YH1 +  YH2: 0.82–0.89, YH3: 0.11–0.18) among all three populations. In agreement with previous mtDNA studies, we supported the hypothesis that the two highly divergent lineages (YH1 and YH2 vs. YH3) derived from a single gene pool, which can be explained by the reunion of at least two paternal populations with the divergent lineages already accumulated before domestication. We estimated a divergence time of 408 110 years between the two divergent lineages, which is consistent with the data from mitochondrial DNA in yaks.  相似文献   

8.
Brown bears have lost most of their range on the European continent. The remaining western populations are small, isolated and highly endangered. The Dinaric-Pindos brown bear population is the western-most stable population and the fourth largest in Europe. It has been recognized as a potential source for recolonization of populations whose survival is at risk. Indeed, several translocations of Dinaric bears to Italy, Austria and France have recently been made. Despite the importance of the Dinaric bear population, its genetic status remains poorly understood. Using tissue samples from 156 hunted or accidentally killed Dinaric bears in Croatia, this study analysed genetic diversity at 12 microsatellite loci, as well as population structure and past reductions in size. In addition, a subset of 59 samples was used to assess diversity of the mitochondrial DNA control region. The results indicate that Dinaric bears have high nuclear genetic diversity, as compared to other extant brown bear populations, despite genetic evidence of a bottleneck caused by past persecutions. However, haplotype diversity was low, probably as a result of male-biased dispersal and female philopatry. Not surprisingly, no evidence of population sub-structure was found using nuclear markers, as the bear habitat has remained continuous and the highway network has been built only recently. Management should focus on maintaining habitat connectivity and keeping the effective population size as large as possible. In addition, when removing individuals, care should be taken not to further deplete the population of rare haplotypes. A coordinated transboundary management of the entire Dinaric-Pindos brown bear population should be a priority for its long-term conservation.  相似文献   

9.
Both the Cytb gene of mtDNA and Y chromosome markers were studied in a relatively large sample of brown hares (L. europaeus) from Europe and Anatolia (Turkey and Israel), together with other seven Lepus species, in order to enable comparative analysis of possible sex-specific gene flow. Furthermore, Y chromosome markers were compared with data from biparentally inherited markers in an attempt to understand whether or not their pattern of distribution was congruent with that of allozymes or whether they rather matched mtDNA phylogenies, with which they share uniparental inheritance. Consistent with the general observation, levels of interspecific genetic variability were very low for the Y chromosome markers compared with mtDNA. Moreover, lack of interspecific variation for the Y-DNA studied within Lepus genus rendered these markers improper for any further phylogenetic analysis. With the highest nucleotide diversity in Anatolia compared with Europe, both marker systems confirmed an unbroken species history in Anatolia, corroborated the hypothesis of continuous gene flow from Anatolia's neighbouring regions, and supported the idea of a quick postglacial colonization followed by expansion of the species in large parts of Europe. Phylogenetic analysis under mtDNA revealed the existence of four different haplogroups with a well defined distribution across Europe and Anatolia. Both genetic systems supported the deep separation of Anatolian and European lineages of L. europaeus. Nevertheless, Anatolian Y-DNA lineages extended across a longer geographic distance in south-eastern Europe than Anatolian mtDNA haplotypes, probably as a result of higher female philopatry that makes mtDNA introgression more difficult in brown hares.  相似文献   

10.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

11.
中国地方黄牛的Y染色体遗传多样性及其进化起源   总被引:2,自引:1,他引:1  
中国黄牛的进化起源与遗传多样性一直是国内外动物遗传学家感兴趣的课题之一.本文主要从Y染色体的形态多样性和Y染色体特异性微卫星标记遗传多态性两个方面对中国地方黄牛的遗传多样性和进化起源进行了综述.中国地方黄牛Y染色体具有中着丝粒、亚中着丝粒和近端着丝粒3种类型,这说明中国地方黄牛起源于普通牛和瘤牛.利用Y染色体特异性微卫星标记对中国地方黄牛Y染色体单倍型分布特征及Y染色体基因流模式的分析表明,北方种群中普通牛单倍型频率最高,瘤牛单倍型在南方种群中占优势;在中国不同地域,瘤牛Y染色体单倍型频率呈现自南而北、自东而西逐渐降低的趋势,这再次证实了中国黄牛主要来源于普通牛和瘤牛,这可能是这两类牛群在长期的历史进化过程中,分别从东南方向和西北方向进入我国,并在中原地区汇合的结果.本文为中国地方黄牛品种资源保护和杂交育种工作提供了参考依据.  相似文献   

12.
Analysis of Y chromosome Y‐STRs has proven to be a useful tool in the field of population genetics, especially in the case of closely related populations. We collected DNA samples from 169 males of Czech origin, 80 males of Slovakian origin, and 142 males dwelling Northern Poland. We performed Y‐STR analysis of 12 loci in the samples collected (PowerPlex Y system from Promega) and compared the Y chromosome haplotype frequencies between the populations investigated. Also, we used Y‐STR data available from the literature for comparison purposes. We observed significant differences between Y chromosome pools of Czechs and Slovaks compared to other Slavic and European populations. At the same time we were able to point to a specific group of Y‐STR haplotypes belonging to an R1a haplogroup that seems to be shared by Slavic populations dwelling in Central Europe. The observed Y chromosome diversity may be explained by taking into consideration archeological and historical data regarding early Slav migrations. Am J Phys Anthropol 142:540–548, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Aim  Middle East brown bears ( Ursus arctos syriacus Hemprich and Ehrenberg, 1828) are presently on the edge of extinction. However, little is known of their genetic diversity. This study investigates that question as well as that of Middle East brown bear relationships to surrounding populations of the species.
Location  Middle East region of south-western Asia.
Methods  We performed DNA analyses on 27 brown bear individuals. Twenty ancient bone samples (Late Pleistocene to 20th century) from natural populations and seven present-day samples obtained from captive individuals were analysed.
Results  Phylogenetic analyses of the mitochondrial sequences obtained from seven ancient specimens identify three distinct maternal clades, all unrelated to one recently described from North Africa. Brown bears from Iran exhibit striking diversity (three individuals, three haplotypes) and form a unique clade that cannot be linked to any extant one. Individuals from Syria belong to the Holarctic clade now observed in Eastern Europe, Turkey, Japan and North America. Specimens from Lebanon surprisingly appear as tightly linked to the clade of brown bears now in Western Europe. Moreover, we show that U. a. syriacus in captivity still harbour haplotypes closely linked to those found in ancient individuals.
Main conclusion  This study brings important new information on the genetic diversity of brown bear populations at the crossroads of Europe, Asia and Africa. It reveals a high level of diversity in Middle East brown bears and extends the historical distribution of the Western European clade to the East. Our analyses also suggest the value of a specific breeding programme for captive populations.  相似文献   

14.
Occasional XY recombination is a proposed explanation for the sex‐chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW‐European Hyla arborea populations identified male‐specific alleles at sex‐linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex‐linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex‐chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY‐recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations).  相似文献   

15.
The male dispersal patterns of western lowland gorillas (WLGs, Gorilla gorilla gorilla) are not well understood. To determine whether most silverbacks stay close to their relatives, we analyzed autosomal and Y‐chromosomal microsatellites (STRs) in wild WLGs at Moukalaba, Gabon. We obtained STR genotypes for 38 individuals, including eight silverbacks and 12 adult females in an approximately 40 km2 area. Among them, 20 individuals were members of one identified group (Group Gentil; GG), including one silverback and six adult females. The silverback sired all 13 of the offspring in GG and no Y‐STR polymorphism within GG was found, as expected in a one‐male group structure. Over all silverbacks sampled, Y‐STR diversity was high considering the limited sampling area, and silverbacks with similar Y‐STR haplotypes were not always located in nearby areas. Although the misclassification rate of kinship estimates in this study was not negligible, there were no kin dyads among all silverbacks sampled. These results suggest that silverbacks born in the same group do not stay close to each other after maturation. The Y‐STR diversity in this study was similar to that of a previous study conducted in an area that was approximately 150 times larger than our study area. Similarity of WLG Y‐STR diversity between studies at different sampling scales suggests that male gene flow may not be geographically limited. These results suggest that WLG males normally disperse from their natal areas after maturation, at least, in Moukalaba. Am J Phys Anthropol 151:583–588, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The Northern Talysh from Azerbaijan and the Southern Talysh from Iran self‐identify as one ethnic group and speak a Northwestern Iranian language. However, the Northern and Southern Talysh dialects are so different that they may actually be separate languages. Does this linguistic differentiation reflect internal change due to isolation, or could contact‐induced change have played a role? We analyzed mtDNA HVI sequences, 11 Y‐chromosome bi‐allelic markers, and 9 Y‐STR loci in Northern and Southern Talysh and compared them with their neighboring groups. The mtDNA data show a close relatedness of both groups with each other and with neighboring groups, whereas the Northern Talysh Y‐chromosome variation differs from that of neighboring groups, probably as a result of genetic drift. This genetic drift most likely reflects a founder event in the male gene pool of Northern Talysh: either fewer males than females migrated to Azerbaijan, or there was a higher degree of relatedness among the male migrants. Since we find no evidence of substantial genetic contact between either Northern or Southern Talysh and neighboring groups, we conclude that internal change, rather than contact‐induced change, most likely explains the linguistic differentiation between Northern and Southern Talysh. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Noninvasively collected genetic data can be used to analyse large‐scale connectivity patterns among populations of large predators without disturbing them, which may contribute to unravel the species’ roles in natural ecosystems and their requirements for long‐term survival. The demographic history of brown bears (Ursus arctos) in Northern Europe indicates several extinction and recolonization events, but little is known about present gene flow between populations of the east and west. We used 12 validated microsatellite markers to analyse 1580 hair and faecal samples collected during six consecutive years (2005–2010) in the Pasvik Valley at 70°N on the border of Norway, Finland and Russia. Our results showed an overall high correlation between the annual estimates of population size (Nc), density (D), effective size (Ne) and Ne/Nc ratio. Furthermore, we observed a genetic heterogeneity of ~0.8 and high Ne/Nc ratios of ~0.6, which suggests gene flow from the east. Thus, we expanded the population genetic study to include Karelia (Russia, Finland), Västerbotten (Sweden) and Troms (Norway) (477 individuals in total) and detected four distinct genetic clusters with low migration rates among the regions. More specifically, we found that differentiation was relatively low from the Pasvik Valley towards the south and east, whereas, in contrast, moderately high pairwise FST values (0.91–0.12) were detected between the east and the west. Our results indicate ongoing limits to gene flow towards the west, and the existence of barriers to migration between eastern and western brown bear populations in Northern Europe.  相似文献   

18.
Studying the current distribution of genetic diversity in humans has important implications for our understanding of the history of our species. We analyzed a set of linked STR and SNP loci from the paternally inherited Y chromosome to infer the past demography of 55 African and Eurasian populations, using both the parametric and nonparametric coalescent‐based methods implemented in the BEAST application. We inferred expansion events in most sedentary farmer populations, while we found constant effective population sizes for both nomadic hunter‐gatherers and seminomadic herders. Our results differed, on several aspects, from previous results on mtDNA and autosomal markers. First, we found more recent expansion patterns in Eurasia than in Africa. This discrepancy, substantially stronger than the ones found with the other kind of markers, may result from a lower effective population size for men, which might have made male‐transmitted markers more sensitive to the out‐of‐Africa bottleneck. Second, we found expansion signals only for sedentary farmers but not for nomadic herders in Central Asia, while these signals were found for both kind of populations in this area when using mtDNA or autosomal markers. Expansion signals in this area may result from spatial expansion processes and may have been erased for the Y chromosome among the herders because of restricted male gene flow. Am J Phys Anthropol 157:217–225, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
  • 1 We review the genetics research that has been conducted on the European brown bear Ursus arctos, one of the genetically best‐studied mammalian species.
  • 2 The first genetics studies on European brown bears were on phylogeography, as a basis for proposed population augmentations. Two major mitochondrial DNA lineages, western and eastern, and two clades within the western lineage were found. This led to a hypothesis that brown bears had contracted to southern refugia during the last glacial maximum. More recent results suggest that gene flow among brown bears blurred this structure and they survived north of these putative refugia. Thus, today's structure might be a result of population fragmentation caused by humans.
  • 3 The nuclear diversity of European brown bears is similar in range to that in North American bears: low levels occur in the small populations and high levels in the large populations.
  • 4 Many non‐invasive genetic methods, developed during research on brown bears, have been used for individual identification, censusing populations, monitoring migration and gene flow, and testing methods that are easier to use in endangered populations and over large areas.
  • 5 Genetics has been used to study many behavioural and population ecological questions that have relevance for the conservation and management of brown bears.
  • 6 The European brown bear has served, and will continue to serve, as a model for the development of methods, analyses and hypotheses in conservation genetics.
  相似文献   

20.
G YANNIC  P BASSET  J HAUSSER 《Molecular ecology》2008,17(18):4118-4133
Using one male‐inherited, one female‐inherited and eight biparentally inherited markers, we investigate the population genetic structure of the Valais shrew (Sorex antinorii) in the Swiss Alps. Bayesian analysis on autosomal microsatellites suggests a clear genetic differentiation between two groups of populations. This geographically based structure is consistent with two separate postglacial recolonization routes of the species into Switzerland from Italian refugia after the last Pleistocene glaciations. Sex‐specific markers also confirm genetic structuring among western and eastern areas, since very few haplotypes for either Y chromosome or mtDNA genome are shared between the two regions. Overall, these results suggest that two already well‐differentiated genetic lineages colonized the Swiss Alps and came into secondary contact in the Rhône Valley. Low level of admixture between the two lineages is likely explained by the mountainous landscape structure of lateral valleys orthogonal to the main Rhône valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号