首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
Gammarus leopoliensis (Crustacea: Amphipoda) is considered a north‐eastern Carpathian endemic species and therefore can be regarded as an appropriate model for testing the hypothesis of Quaternary glacial survival in northern microrefugia. However, 250 km south, the south‐western Carpathians harbour populations that resemble phenotypically both G. leopoliensis and Gammarus kischineffensis, a similar species distributed east of the Carpathians. We used maximum‐likelihood and Bayesian methods to evaluate the phylogenetic relationships of these three taxa based on mitochondrial and nuclear markers, and quantitatively compared diversity patterns, phylogeography and divergence times among north‐eastern and south‐western Carpathian taxa. Results indicate that G. leopoliensis and the south‐western populations form together a strongly supported group (G. leopoliensis s.l.) which, along with G. kischineffensis, belongs to the Gammarus balcanicus clade. This group contains 12 lineages mainly of Pliocene age. G. leopoliensis consists of two widely distributed and recently expanded allopatric sister lineages that diverged from the southern ones ca. 4 Ma, indicating long‐term survival in northern microrefugia. The southern lineages are micro‐endemic and display a scattered distribution, suggesting a more ancient, relict pattern. We conclude that the contrasting diversity patterns between the disjunct distributional areas of G. leopoliensis s.l. reflect differential survival of lineages across the latitudinal gradient, offering a promising system for comparing the evolutionary ecology of lineages persisting in latitudinally disconnected microrefugia. These results fill an important gap in the knowledge of European gammarid biogeography and reveal that all Carpathian Gammarus taxa are ancient and diverse species complexes.  相似文献   

2.
The traditional southern Pleistocene refugia hypothesis in Europe has lately been challenged for several animal and plant species. The Carpathian Basin, especially at the marginal regions, is one of the recently recognized biodiversity hotspots in Europe. Marginal populations are prone to have lower genetic diversity and higher genetic differentiation than central populations. Here, we examined one mitochondrial DNA fragment (D‐loop) and nine nuclear (microsatellite) loci to describe the genetic diversity and phylogeographical pattern of fire salamander (Salamandra salamandra) populations in the Carpathian Basin with focusing on the southern margins of the Western Carpathians, where isolated populations of this species are present. Analyses of microsatellites indicated reduced genetic diversity for most of the isolated populations. Based on the mitochondrial DNA, only two haplotypes were found, whereas the analyses with the nuclear markers revealed a more recent genetic split between Western (Alpine) and Eastern (Carpathian) populations, and separated the Apuseni Mountains population (part of the Western Carpathians). Using approximate Bayesian computation analyses, we identified the most probable colonization scenario for the isolated North Hungarian Carpathian Basin populations. The split between isolated salamander populations from the central populations in the Carpathian Mountains dates back to the beginning of the Late Pleistocene, while the split between most of the Hungarian populations can be associated with the Last Glacial Maximum. We found evidence for long‐time isolation between the marginal Carpathian Basin and central populations. Our results also show that S. salamandra survived glacial periods in the temperate forests of north‐east Pannonia (North Hungarian Mountains), confirming that the Carpathian Basin served as important northerly refugia during the Pleistocene climatic oscillations.  相似文献   

3.
Despite increasing information about postglacial recolonization of European freshwater systems, very little is known about pre-Pleistocene history. We used data on the recent distribution and phylogenetic relationships of stone loach mitochondrial lineages to reconstruct the initial colonization pattern of the Danube river system, one of the most important refuges for European freshwater ichthyofauna. Fine-scale phylogeography of the Danubian populations revealed five highly divergent lineages of pre-Pleistocene age and suggested the multiple origin of the Danubian stone loach. The mean sequence divergence among lineages extended from 7.0% to 13.4%, which is the highest intraspecific divergence observed so far within this river system. Based on the phylogeographical patterns, we propose the following hypothesis to relate the evolution and dispersal of the studied species with the evolution of the Danube river system and the Carpathian Mountains: (i) during the warmer period in the Miocene, the areas surrounding the uplifting Alps and Carpathians served as mountainous refuges for cold-water adapted fish and promoted the diversification of its populations, and (ii) from these refuges, colonization of the emerging Danube river system may have taken place following the retreat of the Central Paratethys. Co-existence of highly divergent mtDNA lineages in a single river system shows that range shifts in response to climatic changes during the Quaternary did not cause extensive genetic homogenization in the stone loach populations. However, the wide distribution of some mtDNA lineages indicates that the Pleistocene glaciations promoted the dispersal and mixing of populations through the lowlands.  相似文献   

4.
We characterize divergence times, intraspecific diversity and distributions for recently recognized lineages within the Hyla arborea species group, based on mitochondrial and nuclear sequences from 160 localities spanning its whole distribution. Lineages of H. arborea, H. orientalis, H. molleri have at least Pliocene age, supporting species level divergence. The genetically uniform Iberian H. molleri, although largely isolated by the Pyrenees, is parapatric to H. arborea, with evidence for successful hybridization in a small Aquitanian corridor (southwestern France), where the distribution also overlaps with H. meridionalis. The genetically uniform H. arborea, spread from Crete to Brittany, exhibits molecular signatures of a postglacial range expansion. It meets different mtDNA clades of H. orientalis in NE-Greece, along the Carpathians, and in Poland along the Vistula River (there including hybridization). The East-European H. orientalis is strongly structured genetically. Five geographic mitochondrial clades are recognized, with a molecular signature of postglacial range expansions for the clade that reached the most northern latitudes. Hybridization with H. savignyi is suggested in southwestern Turkey. Thus, cryptic diversity in these Pliocene Hyla lineages covers three extremes: a genetically poor, quasi-Iberian endemic (H. molleri), a more uniform species distributed from the Balkans to Western Europe (H. arborea), and a well-structured Asia Minor-Eastern European species (H. orientalis).  相似文献   

5.
The fresh waters of the Baltic German and Polish lowlands are inhabited by several Gammarus species. One of them, Gammarus fossarum, a common inhabitant of lowland and submontane waters in western and central Europe, is known to show different morphotypes of unclear taxonomic status. Recent molecular studies showed that Gammarus fossarum is a complex of numerous highly divergent lineages. We characterized one of these lineages genetically and morphologically, described it as a species new to science and named it in honour of Krzysztof Ja?d?ewski as Gammarus jazdzewskii. The newly described species is widely distributed in Central Europe, from the Western Carpathians to the Baltic Lowlands. Its ancestral lineage appeared in the Miocene and diversified largely throughout the Pleistocene, presumably in the Western Carpathians. Its current distribution is predominantly a result of postglacial expansion from local refugia located in the Western Carpathians.  相似文献   

6.
The fire-bellied toads Bombina bombina and Bombina variegata, interbreed in a long, narrow zone maintained by a balance between selection and dispersal. Hybridization takes place between local, genetically differentiated groups. To quantify divergence between these groups and reconstruct their history and demography, we analysed nucleotide variation at the mitochondrial cytochrome b gene (1096 bp) in 364 individuals from 156 sites representing the entire range of both species. Three distinct clades with high sequence divergence (K2P = 8-11%) were distinguished. One clade grouped B. bombina haplotypes; the two other clades grouped B. variegata haplotypes. One B. variegata clade included only Carpathian individuals; the other represented B. variegata from the southwestern parts of its distribution: Southern and Western Europe (Balkano-Western lineage), Apennines, and the Rhodope Mountains. Differentiation between the Carpathian and Balkano-Western lineages, K2P approximately 8%, approached interspecific divergence. Deep divergence among European Bombina lineages suggests their preglacial origin, and implies long and largely independent evolutionary histories of the species. Multiple glacial refugia were identified in the lowlands adjoining the Black Sea, in the Carpathians, in the Balkans, and in the Apennines. The results of the nested clade and demographic analyses suggest drastic reductions of population sizes during the last glacial period, and significant demographic growth related to postglacial colonization. Inferred history, supported by fossil evidence, demonstrates that Bombina ranges underwent repeated contractions and expansions. Geographical concordance between morphology, allozymes, and mtDNA shows that previous episodes of interspecific hybridization have left no detectable mtDNA introgression. Either the admixed populations went extinct, or selection against hybrids hindered mtDNA gene flow in ancient hybrid zones.  相似文献   

7.
Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median‐joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum.  相似文献   

8.
We assess the role of the Carpathians as an extra‐Mediterranean glacial refugium for the crested newt Triturus cristatus. We combine a multilocus phylogeography (one mitochondrial protein‐coding gene, three nuclear introns, and one major histocompatibility complex gene) with species distribution modelling (projected on current and Last Glacial Maximum climate layers). All genetic markers consistently show extensive genetic variation within and genetic depletion outside the Carpathians. The species distribution model suggests that most of the current range was unsuitable at the Last Glacial Maximum, but a small suitable area remained in the Carpathians. Triturus cristatus dramatically expanded its postglacial range, colonizing much of temperate Eurasia from a glacial refugium in the Carpathians. Within the Carpathians, T. cristatus persisted in multiple geographically discrete regions, providing further support for a Carpathian ‘refugia within refugia’ scenario. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 574–587.  相似文献   

9.
There is now considerable evidence for the survival of temperate species within glacial refugia that were situated at relatively high latitudes, notably the Carpathian Basin and Dordogne region in Europe. However, the prevalence of fossil remains in such locations is rarely matched by molecular evidence for their contribution to subsequent geographical and demographic expansion of the species in question. One obstacle to this has been insufficient analysis of modern samples from the relevant areas, in particular the parts of eastern Europe that surround the Carpathian refugium. In the present study, we examine the patterns of variation in mitochondrial DNA of the common vole (Microtus arvalis), obtained from existing museum specimens and from newly‐collected samples obtained in this area. We show that common voles from one of six extant mitochondrial DNA lineages have colonized most of the species' range in eastern Europe. We contend that the post‐glacial dispersal of this lineage most likely originated from the Carpathian refugium, adding support to the argument that such northern refugia made an important contribution to existing genetic diversity in Europe. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

10.
Aim We analyse patterns of biodiversity in the spring snail genus Bythinella, a group of highly isolated and stenotopic freshwater species. We aim to test: (1) whether there are European areas of increased diversity (i.e. ‘hotspots’), (2) whether the potential hotspots inferred show qualitative differences in biodiversity characteristics such as endemicity, distinctiveness of taxa, age of lineages or degree of fragmentation, and (3) whether these hotspots match the Pleistocene refugia of Bythinella spp. Location Europe, Asia Minor. Methods The analyses are based on genetic data from 717 Bythinella specimens sampled at 194 sites. We used haplotypes as operational units in all analyses. To test hypothesis 1, mean pairwise genetic distances between Bythinella populations within each 1° × 1° geographical grid cell sampled in Europe were calculated. Within individual mountain ranges, grid cells with high diversity were grouped with neighbouring ones and hotspots were identified based on pre‐defined criteria. Then, to test hypothesis 2, different biodiversity indices of these regions were calculated and compared. Finally, to test hypothesis 3, the spatial distribution of the identified hotspots was compared with the known Pleistocene refugia of Bythinella spp. Results Five areas showed increased levels of genetic diversity: the Massif Central/Pyrenees, the western and eastern Alps, and the western and eastern Carpathians. These regions showed qualitative differences in biodiversity, with the eastern Carpathians holding the highest number of (endemic) haplotypes, the oldest and most distinct lineages and the highest degree of fragmentation. Only three of the five detected hotspots matched previously identified Pleistocene refugia for Bythinella spp. Main conclusions The genetic diversity of Bythinella spp. is not randomly distributed throughout Europe. Some of the hotspots we identify coincide with those found in other freshwater taxa; others have not previously been reported. Thus, spring organisms may reflect a unique evolutionary history that is distinct from lentic and lotic taxa. Our findings may be useful for conservation purposes even though the species‐level taxonomy of the genus is still under discussion.  相似文献   

11.
The refugial history and postglacial re‐colonization routes of Western Carpathian insects are insufficiently understood. Therefore, we investigated the spatio‐genetic structure (phylogeography) of Western Carpathian populations of Erebia euryale (Esper, 1805) (Lepidoptera, Nymphalidae) and inferred their colonization routes over the postglacial period. Our results provide new insights into the phylogeography and origin of Erebia euryale in the rarely studied region of the Western Carpathian Mountains. Their phylogeography, including glacial refugia and Pleistocene expansion routes, was reconstructed based on two mitochondrial (COI and CR) and three nuclear markers (CAD, MDH and IDH). Statistical parsimony networks showed the following geographic coherences: (1) populations from Romania and the Bukovské Mountains (Kremenec) grouped together; (2) a ?ergov group containing populations only from the ?ergov Mountains; (3) a Volovské Mountains group with populations from Koj?ovská ho?a and Slovak Paradise grouped together, most likely due to the lack of geographic isolation between the areas; (4) haplotypes characterized from the Volovské Mountains populations were widespread. Comparisons of Western Carpathian E. euryale COI‐haplotypes with haplotypes from the Southern Carpathians and Balkans suggest that the refugial areas were located in south‐eastern Europe in the Balkan region and Southern Carpathians. We also hypothesize possible central European contact zones in Slovakia for E. euryale in the Western Carpathians. Our results indicate that the Western Carpathians could have served as one of the contact zones between Eastern and Western populations, and additionally as an extra refugium in the southern part of the Volovské Mountains for populations also occurring in Czech mountain regions.  相似文献   

12.
In order to contribute to the debate about southern glacial refugia used by temperate species and more northern refugia used by boreal or cold-temperate species, we examined the phylogeography of a widespread snake species (Vipera berus) inhabiting Europe up to the Arctic Circle. The analysis of the mitochondrial DNA (mtDNA) sequence variation in 1043 bp of the cytochrome b gene and in 918 bp of the noncoding control region was performed with phylogenetic approaches. Our results suggest that both the duplicated control region and cytochrome b evolve at a similar rate in this species. Phylogenetic analysis showed that V. berus is divided into three major mitochondrial lineages, probably resulting from an Italian, a Balkan and a Northern (from France to Russia) refugial area in Eastern Europe, near the Carpathian Mountains. In addition, the Northern clade presents an important substructure, suggesting two sequential colonization events in Europe. First, the continent was colonized from the three main refugial areas mentioned above during the Lower-Mid Pleistocene. Second, recolonization of most of Europe most likely originated from several refugia located outside of the Mediterranean peninsulas (Carpathian region, east of the Carpathians, France and possibly Hungary) during the Mid-Late Pleistocene, while populations within the Italian and Balkan Peninsulas fluctuated only slightly in distribution range, with larger lowland populations during glacial times and with refugial mountain populations during interglacials, as in the present time. The phylogeographical structure revealed in our study suggests complex recolonization dynamics of the European continent by V. berus, characterized by latitudinal as well as altitudinal range shifts, driven by both climatic changes and competition with related species.  相似文献   

13.
Phylogeographic analyses have revealed the importance of Pleistocene vicariance events in shaping the distribution of genetic diversity in freshwater fishes. However, few studies have examined the patterning of variation in freshwater organisms with differing dispersal syndromes and life histories. The present investigation addresses this gap, examining the phylogeography of Sida crystallina, a species whose production of diapausing eggs capable of passive dispersal was thought to constrain its regional genetic differentiation. By contrast, the present analysis has revealed deep allozyme and cytochrome oxidase I mitochondrial DNA divergence between populations from North America and Europe. Moreover, North American populations are separated into four allopatric assemblages, whose distribution suggests their derivation from different Pleistocene refugia. These lineages show higher haplotype diversity and deeper sequence divergence than those of any fish from temperate North America. Its distinctive life history traits have evidently sheltered lineages of Sida from extinction, contributing to a remarkably comprehensive and high resolution phylogeographic record.  相似文献   

14.
The dace (Leuciscus leuciscus), with a very large geographic distribution all over Europe, represents an interesting species model for studies of the global mechanisms underlying aquatic system biodiversity. To assess the congruence with the past colonization process hypothesis of the freshwater fauna in Western Europe, we investigated the evolutionary history of this species, by integrating morphological variation (eight meristic characters), mitochondrial (cytochrome b, 16S rDNA and control region, over a total of 2169 bp) and nuclear (12 allozymes loci) phylogenetic relationships, and investigating population dynamics via expansion, migration, bottleneck, and divergence time analyses. We carried out nested clade phylogeographic analysis for a total of 663 specimens from 31 populations taken from all over the distribution area. Unlike previous studies, we found that L. leuciscus is currently constituted by five lineages belonging to two clades (yielding 6.3% of pairwise divergence). The relationships between these lineages were accounted for by complex biogeographical patterns due to Pliocene and Pleistocene paleoclimatic events, validating the identification of new glacial refuges for freshwater fish in Western Europe. Finally, we demonstrated hybridization between L. leuciscus and Leuciscus idus.  相似文献   

15.
The naked mole‐rat (Heterocephalus glaber) is used as an animal model in various studies, but not much is known on the genetic diversity of this animal. Here, on the basis of dataset collected from the most part of the distribution range of the naked mole‐rat, we reconstruct phylogenetic relationships between its different lineages using mitochondrial and nuclear markers. We also mapped the distribution of the main genetic lineages, dated the divergence using different Bayesian tree‐calibration techniques, and modeled the distribution of ecological niches for the period of last glacial maximum. Our results show the existence of two deeply divergent clades designated as the eastern clade (East Ethiopia) and the southern clade (South Ethiopia and North Kenya). Additional phylogeographic structure was demonstrated for each of these two clades. Divergence between these two main lineages dated back to the Middle Pleistocene (ca. 1.4–0.8 Mya) and may have been related to climate changes in Africa during the Mid‐Pleistocene Revolution. In light of substantial genetic differences between the eastern and southern lineages of the naked mole‐rat, these two clades can be considered as two deeply divergent subspecies or even as distinct species.  相似文献   

16.
Environmental changes over the Plio‐Pleistocene have been key drivers of speciation patterns and genetic diversification in high‐latitude and mesic environments, yet comparatively little is known about the evolutionary history of species in arid environments. We applied phylogenetic and phylogeographic analyses to understand the evolutionary history of Warramaba grasshoppers from the Australian arid zone, a group including sexual and parthenogenetic lineages. Sequence data (mitochondrial COI) showed that the four major sexual lineages within Warramaba most likely diverged in the Pliocene, around 2–7 million years ago. All sexual lineages exhibited considerable phylogenetic structure. Detailed analyses of the hybrid parthenogenetic species W. virgo and its sexual progenitors showed a pattern of high phylogenetic diversity and phylogeographic structure in northern lineages, and low diversity and evidence for recent expansion in southern lineages. Northern sexual lineages persisted in localized refugia over the Pleistocene, with sustained barriers promoting divergence over this period. Southern parts of the present range became periodically unsuitable during the Pleistocene, and it is into this region that parthenogenetic lineages have expanded. Our results strongly parallel those for sexual and parthenogenetic lineages of the gecko Heteronotia from the same region, indicating a highly general effect of Plio‐Pleistocene environmental change on diversification processes in arid Australia.  相似文献   

17.
Phylogeography of red deer (Cervus elaphus) in Europe   总被引:1,自引:0,他引:1  
Aim To investigate the phylogeographical patterns of red deer (Cervus elaphus) in Europe, and to disentangle the influence of ancient (e.g. Pleistocene ice ages) from more recent processes (e.g. human translocations). Location Europe. Methods In this study we provide by far the most extensive analysis of genetic structure in European red deer, based on analyses of variation at two mitochondrial markers (cyt b and D‐loop) in a large number of individuals from 39 locations. Relationships of mitochondrial DNA haplotypes were determined using minimum spanning networks and phylogenetic analyses. Population structure was examined by analyses of molecular variance. Historical processes shaping the present patterns were inferred from nested clade analysis and nucleotide diversity statistics. Results Within Europe, we detected three deeply divergent mitochondrial DNA lineages. The three lineages displayed a phylogeographical pattern dividing individuals into western European, eastern European and Mediterranean (Sardinia, Spain and Africa) groups, suggesting contraction into three separate refugia during the last glaciation. Few haplotypes were shared among these three groups, a finding also confirmed by FST values. Calculations of divergence times suggest that the groups probably split during the Pleistocene. Main conclusions The observed pattern is interpreted to result from isolation in different refugia during the last glaciation. The western and eastern European lineages could be linked to an Iberian and Balkan refugium, respectively. The third lineage might originate from a Sardinian or African refugium. We link local phylogeographical patterns observed in Europe to the post‐glacial recolonization process, shaped by the geographical localization of refugia and barriers to gene flow. Regardless of the importance of red deer as a game species and the tradition of translocating red deer in Europe, we detected few individuals that did not match the trichotomous pattern, suggesting that translocations have occurred mainly at smaller spatial scales.  相似文献   

18.
The grasshopper Oedaleus decorus is a thermophilic insect with a large, mostly south-Palaearctic distribution range, stretching from the Mediterranean regions in Europe to Central-Asia and China. In this study, we analyzed the extent of phylogenetic divergence and the recent evolutionary history of the species based on 274 specimens from 26 localities across the distribution range in Europe. Phylogenetic relationships were determined using sequences of two mitochondrial loci (ctr, ND2) with neighbour-joining and Bayesian methods. Additionally, genetic differentiation was analyzed based on mitochondrial DNA and 11 microsatellite markers using F-statistics, model-free multivariate and model-based Bayesian clustering approaches. Phylogenetic analyses detected consistently two highly divergent, allopatrically distributed lineages within O. decorus. The divergence among these Western and Eastern lineages meeting in the region of the Alps was similar to the divergence of each lineage to the sister species O. asiaticus. Genetic differentiation for ctr was extremely high between Western and Eastern grasshopper populations (F(ct)=0.95). Microsatellite markers detected much lower but nevertheless very significant genetic structure among population samples. The nuclear data also demonstrated a case of cytonuclear discordance because the affiliation with mitochondrial lineages was incongruent in Northern Italy. Taken together these results provide evidence of an ancient separation within Oedaleus and either historical introgression of mtDNA among lineages and/or ongoing sex-specific gene flow in this grasshopper. Our study stresses the importance of multilocus approaches for unravelling the history and status of taxa of uncertain evolutionary divergence.  相似文献   

19.
The Gammaridae shows the greatest disparity in species diversity and distribution pattern in the Amphipoda, with some genera ranging from the Palearctic to Nearctic, while others are limited to the Mediterranean region or ancient Tethyan margins. Here we present the first molecular phylogenetic analysis of the Gammaridae to investigate its evolutionary history using four genetic markers and a comprehensive set of taxa representing 198 species. The phylogenetic results revealed that the Gammaridae originated from the Tethyan region in the Cretaceous, and split into three morphologically and geographically distinct lineages by the end of the Paleocene. Diversification analysis combined with paleogeological evidence suggested that the Tethyan changes induced by sea‐level fluctuation and tectonic uplift triggered different diversification modes and range expansions for the three lineages. The Gammarus lineage underwent an early rapid radiation across Eurasia and North America, then declined towards modern species. Pontogammarids maintained stable diversification with restricted distributions around the Tethyan basin, whereas sarothrogammarids experienced evolutionary stasis by stranding on the ancient Tethyan margins. Our findings suggest that environmental changes have played an important role in the diversification of Gammaridae lineages, which could be an opportunity to promote adaptive radiations in new habitats, or constraints resulting in evolutionary relicts.  相似文献   

20.
Historical evolutionary events highly affect the modern-day genetic structure of natural populations. Scots pine (Pinus sylvestris L.), as a dominant tree species of the Eurasian taiga communities following the glacial cycles of the Pleistocene, has survived in small, scattered populations at the range limits of its south-eastern European distribution. In this study, we examined genetic relationships, genetic divergence and demographic history of peripheral populations from central-eastern Europe, the Carpathian Mountains and the Pannonian Basin. Four hundred twenty-one individuals from 20 populations were sampled and characterized with both nuclear and chloroplast simple sequence repeat (SSR) markers. Standard population genetic indices, the degree of genetic differentiation and spatial genetic structure were analysed. Our results revealed that peripheral Scots pine populations retained high genetic diversity despite the recently ongoing fragmentation and isolation of the persisting relict populations. Analysis of molecular variance (AMOVA) showed 7% among-population genetic differentiation, and there was no isolation by distance among the island-like occurrences. Genetic discontinuities with strong barriers (99–100% bootstrap support) were identified in the Carpathians. Based on both marker types, populations of the Western Carpathians were delimited from those inhabiting the Eastern Carpathians, and two main genetic lineages were traced that most probably originate from two main refugia. One refugium presumably existed in the region of the Eastern Alps with the Hungarian Plain, while the other was probably found in the Eastern Carpathians. These findings are supported by recent palynological records. The strongest genetic structure was revealed within the Romanian Carpathians on the basis of both marker types. With only some exceptions, no signs of recent bottlenecks or inbreeding were detected. However, Carpathian natural populations of Scots pine are highly fragmented and have a small census size, though they have not yet been affected by genetic erosion induced by isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号