首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High elevation montane areas are called “sky islands” when they occur as a series of high mountains separated by lowland valleys. Different climatic conditions at high elevations makes sky islands a specialized type of habitat, rendering them naturally fragmented compared to more continuous habitat at lower elevations. Species in sky islands face unsuitable climate in the intervening valleys when moving from one montane area to another. The high elevation shola-grassland mosaic in the Western Ghats of southern India form one such sky island complex. The fragmented patches make this area ideal to study the effect of the spatial orientation of suitable habitat patches on population genetic structure of species found in these areas. Past studies have suggested that sky islands tend to have genetically structured populations, possibly due to reduced gene flow between montane areas. To test this hypothesis, we adopted the comparative approach. Using Amplified Fragment Length Polymorphisms, we compared population genetic structures of two closely related, similar sized butterfly species: Heteropsis oculus, a high elevation shola-grassland specialist restricted to the southern Western Ghats, and Mycalesis patnia, found more continuously distributed in lower elevations. In all analyses, as per expectation the sky island specialist H. oculus exhibited a greater degree of population genetic structure than M. patnia, implying a difference in geneflow. This difference in geneflow in turn appears to be due to the natural fragmentation of the sky island complexes. Detailed analysis of a subset of H. oculus samples from one sky island complex (the Anamalais) showed a surprising genetic break. A possible reason for this break could be unsuitable conditions of higher temperature and lower rainfall in the intervening valley region. Thus, sky island species are not only restricted by lack of habitat continuity between montane areas, but also by the nature of the intervening habitat.  相似文献   

2.

Background

Sky islands, formed by the highest reaches of mountain tracts physically isolated from one another, represent one of the biodiversity-rich regions of the world. Comparative studies of geographically isolated populations on such islands can provide valuable insights into the biogeography and evolution of species on these islands. The Western Ghats mountains of southern India form a sky island system, where the relationship between the island structure and the evolution of its species remains virtually unknown despite a few population genetic studies.

Methods and Principal Findings

We investigated how ancient geographic gaps and glacial cycles have partitioned genetic variation in modern populations of a threatened endemic bird, the White-bellied Shortwing Brachypteryx major, across the montane Shola forests on these islands and also inferred its evolutionary history. We used Bayesian and maximum likelihood-based phylogenetic and population-genetic analyses on data from three mitochondrial markers and one nuclear marker (totally 2594 bp) obtained from 33 White-bellied Shortwing individuals across five islands. Genetic differentiation between populations of the species correlated with the locations of deep valleys in the Western Ghats but not with geographical distance between these populations. All populations revealed demographic histories consistent with population founding and expansion during the Last Glacial Maximum. Given the level of genetic differentiation north and south of the Palghat Gap, we suggest that these populations be considered two different taxonomic species.

Conclusions and Significance

Our results show that the physiography and paleo-climate of this region historically resulted in multiple glacial refugia that may have subsequently driven the evolutionary history and current population structure of this bird. The first avian genetic study from this biodiversity hotspot, our results provide insights into processes that may have impacted the speciation and evolution of the endemic fauna of this region.  相似文献   

3.
Various mechanisms of isolation can structure populations and result in cultural and genetic differentiation. Similar to genetic markers, for songbirds, culturally transmitted sexual signals such as breeding song can be used as a measure of differentiation as songs can also be impacted by geographic isolation resulting in population‐level differences in song structure. Several studies have found differences in song structure either across ancient geographic barriers or across contemporary habitat barriers owing to deforestation. However, very few studies have examined the effect of both ancient barriers and recent deforestation in the same system. In this study, we examined the geographic variation in song structure across six populations of the White‐bellied Shortwing, a threatened and endemic songbird species complex found on isolated mountaintops or “sky islands” of the Western Ghats. While some sky islands in the system are isolated by ancient valleys, others are separated by deforestation. We examined 14 frequency and temporal spectral traits and two syntax traits from 835 songs of 38 individuals across the six populations. We identified three major song clusters based on a discriminant model of spectral traits, degree of similarity of syntax features, as well as responses of birds to opportunistic playback. However, some traits like complex vocal mechanisms (CVM), relating to the use of syrinxes, clearly differentiated both ancient and recently fragmented populations. We suggest that CVMs may have a cultural basis and can be used to identify culturally isolated populations that cannot be differentiated using genetic markers or commonly used frequency‐based song traits. Our results demonstrate the use of bird songs to reconstruct phylogenetic groups and impacts of habitat fragmentation even in complex scenarios of historic and contemporary isolation.  相似文献   

4.
Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation (FST = 0.043) among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four (FST = 0.412), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.  相似文献   

5.
Habitat fragmentation is one of the most important causes of biodiversity loss, but many species are distributed in naturally patchy habitats. Such species are often organized in highly dynamic metapopulations or in patchy populations with high gene flow between subpopulations. Yet, there are also species that exist in stable patchy habitats with small subpopulations and presumably low dispersal rates. Here, we present population genetic data for the ‘magnetic’ termite Amitermes meridionalis, which show that short distances between subpopulations do not hinder exceptionally strong genetic differentiation (FST: 0.339; RST: 0.636). Despite the strong genetic differentiation between subpopulations, we did not find evidence for genetic impoverishment. We propose that loss of genetic diversity might be counteracted by a long colony life with low colony turnover. Indeed, we found evidence for the inheritance of colonies by so‐called ‘replacement reproductives’. Inhabiting a mound for several generations might result in loss of gene diversity within a colony but maintenance of gene diversity at the subpopulation level.  相似文献   

6.
Aim To assess the effects of altitude and historic and recent forest fragmentation on the genetic diversity and structure of the wind‐pollinated tropical tree line species Polylepis incana. Location One of the highest mountain forest regions of the world, located in the Eastern Cordillera of the Ecuadorian Andes. Methods We compared genetic diversity and structure of adult trees with those of seedlings (n= 118 in both cases) in nine forest stands spanning an altitudinal gradient from 3500 to 4100 m a.s.l. using amplified fragment length polymorphisms (AFLPs). Genetic diversity was calculated as percentage of polymorphic bands (P) and Nei's expected heterozygosity (He); genetic differentiation was assessed using analysis of molecular variance, ΦST statistics and Bayesian cluster analysis. Results Estimates of genetic diversity at the population level were significantly lower in seedlings than in adults. Genetic diversity (He‐value) was, in both cases, negatively correlated to altitude and positively correlated to population size in the seedlings. Genetic differentiation of the seedlings was approximately as high (φST= 0.298) as that of the adults (φST= 0.307), and geographical differentiation was clearly reflected in both AFLP profiles, with mountain ridges acting as barriers to gene flow. Main conclusions Our study provides evidence of a historic upslope migration of P. incana in central Ecuador. In addition, it highlights the detrimental effects of unexpectedly strong genetic isolation, both recent and historical, particularly for our wind‐pollinated species where the distance between forest stands was less than 25 km. We therefore additionally propose that in habitats with pronounced high‐mountain landscape structures, gene flow may be hampered to such an extent that species have a more pronounced sensitivity to habitat fragmentation, even among populations of wind‐pollinated trees.  相似文献   

7.
Sky islands provide ideal opportunities for understanding how climatic changes associated with Pleistocene glacial cycles influenced species distributions, genetic diversification, and demography. The salamander Plethodon ouachitae is largely restricted to high‐elevation, mesic forest on six major mountains in the Ouachita Mountains. Because these mountains are separated by more xeric, low‐elevation valleys, the salamanders appear to be isolated on sky islands where gene flow among populations on different mountains may be restricted. We used DNA sequence data along with ecological niche modelling and coalescent simulations to test several hypotheses related to diversifications in sky island habitats. Our results revealed that P. ouachitae is composed of seven well‐supported lineages structured across six major mountains. The species originated during the Late Pliocene, and lineage diversification occurred during the Middle Pleistocene in a stepping stone fashion with a cyclical pattern of dispersal to a new mountain followed by isolation and divergence. Diversification occurred primarily on an east–west axis, which is likely related to the east–west orientation of the Ouachita Mountains and the more favourable cooler and wetter environmental conditions on north slopes compared to south‐facing slopes and valleys. All non‐genealogical coalescent methods failed to detect significant population expansion in any lineages. Bayesian skyline plots showed relatively stable population sizes over time, but indicated a slight to moderate amount of population growth in all lineages starting approximately 10 000–12 000 years ago. Our results provide new insight into sky island diversifications from a previously unstudied region, and further demonstrate that climatic changes during the Pleistocene had profound effects on lineage diversification and demography, especially in species from environmentally sensitive habitats in montane regions.  相似文献   

8.
The Western Ghats mountain range in India is a biodiversity hotspot for a variety of organisms including a large number of endemic freshwater crab species and genera of the family Gecarcinucidae. The phylogenetic relationships of these taxa, however, have remained poorly understood. Here, we present a phylogeny that includes 90% of peninsular Indian genera based on mitochondrial 16S rRNA and nuclear histone H3 gene sequences. The subfamily Gecarcinucinae was found to be paraphyletic with members of two other subfamilies, Liotelphusinae and Parathelphusinae, nesting within. We identify a well‐supported clade consisting of north Indian species and one clade comprising mostly south Indian species that inhabit the southern ‘sky islands’ of the Western Ghats. Relationships of early diverging genera, however, were resolved with low support. This study also includes newly sampled material from an isolated mountain plateau in the northern part of the Western Ghats, representing a new species of Gubernatoriana, which we describe here as Gubernatoriana basalticola sp. n. The new species is immediately distinguished from its congeners and the related genera Ghatiana and Inglethelphusa by its carapace and cheliped morphology, which are unique among Indian freshwater crabs. This study highlights the urgent need for continued faunistic studies to assess the true diversity of gecarcinucid crabs on the Indian subcontinent, to fully understand the basal phylogenetic relationships within the freshwater crab family Gecarcinucidae, and to evaluate the conservation threat status and biogeography of the montane freshwater crabs of the Western Ghats.  相似文献   

9.
As biodiversity hotspots, montane regions have been a focus of research to understand the divergence process. Like their oceanic counterparts, the diversity of the ‘sky islands’ might be ascribed to geographic isolation of mountaintops. However, because the sky islands, and especially those in northern latitudes, are subject to extreme climatic events such as the glacial cycles that drove both altitudinal and geographical shifts in species’ distributions, the dynamic colonization process is also a possible factor driving divergence. Here we test these two hypotheses (i.e. isolation versus colonization) in a flightless montane grasshopper, Melanoplus oregonensis, which is a member of a diverse group that radiated across the Rocky Mountains of North America. Using approximate Bayesian computation (ABC) and spatially explicit simulations that account for spatial heterogeneity and temporal shifts in species distributions, we show that a colonization model of the sky islands from refugial populations provides a significantly better fit to the empirical genetic data than a model of the geographic isolation among sky islands. Moreover, support for the colonization model holds irrespective of whether the movement of individuals was modeled as a diffusion process or was informed by differences in habitat suitabilities across the landscape. With validation analyses to confirm the models provide a good fit to the data, as well as general power and quality analyses, the research not only adds to a growing body of work on the complex dynamics underlying montane biodiversity, but it also provides much needed evaluation of competing hypotheses based on explicit models of the divergence process, as opposed to inferences about diversification drivers from species diversity patterns.  相似文献   

10.
Fragmentation of the habitat due to glaciations, fires and human activities affected the distribution range of Araucaria araucana in southern South America. On the borders of the Argentinean Patagonian steppe, the species is restricted to isolated patches without natural regeneration. Our objective is to test the hypothesis that these populations are relicts of pre-Pleistocene origin. A total of 224 individuals from 16 populations were sampled. Twenty chloroplast microsatellites, 19 non-coding chloroplast DNA regions and eight mitochondrial DNA fragments were screened for polymorphisms. A low transferability rate of universal primers from Pinaceae and also a low variation were detected for this ancient species. Only one non-coding region of the chloroplast DNA showed polymorphism allowing the identification of five haplotypes. A low genetic differentiation (G ST  = 0.11; G′ ST  = 0.267) and lack of geographic structure was found. Allelic richness was lower and genetic differentiation higher among the eastern isolated populations, suggesting a long lasting persistence. Conservation guidelines are given for these relictual populations, which are located outside the limits of the National Parks.  相似文献   

11.
Habitat loss, fragmentation of meadow patches, and global climate change (GCC) threaten plant communities of montane grasslands. We analyzed the genetic structure of the montane herb Geranium sylvaticum L. on a local scale in order to understand the effects of habitat fragmentation and potential GCC impacts on genetic diversity and differentiation. Amplified fragment length polymorphism (AFLP) fingerprinting and cpDNA sequencing was performed for 295 individuals of 15 G. sylvaticum populations spanning the entire distribution range of the species in the Taunus mountain range in Germany. We found patterns of substantial genetic differentiation among populations using 150 polymorphic AFLP markers (mean F ST = 0.105), but no variation in 896 bp of plastid DNA sequences. While populations in the center of their local distribution range were genetically diverse and less differentiated, higher F ST values and reduced genetic variability was revealed for the populations at the low-altitudinal distribution margins. Projections of GCC effects on the distribution of G. sylvaticum in 2050 showed that GCC will likely lead to the extinction of most edge populations. To maintain regional genetic diversity, conservation efforts should focus on the diverse high-altitude populations, although a potential loss of unique variations in genetically differentiated peripheral populations could lower the overall genetic diversity and potentially the long-term viability in the study region. This study documents the usefulness of fine-scale assessments of genetic population structure in combination with niche modeling to reveal priority regions for the effective long-term conservation of populations and their genetic variation under climate change.  相似文献   

12.
Aim The effect of habitat fragmentation on population genetic structure results from the interaction between species’ life history traits and the particular landscape context, and both components are inherently difficult to tease apart. Here, we compare the genetic (allozyme) structure of four co‐occurring woody species with contrasting life histories to explore how well their response to the same fragmentation process can be predicted from their functional traits. Location A highly fragmented forest landscape located in the lower Guadalquivir catchment, south‐western Spain. Methods We sampled four species (Cistus salviifolius, Myrtus communis, Pistacia lentiscus and Quercus coccifera) from the same 23 forest fragments known to form a representative array of habitat characteristics in the region. We assessed genetic diversity (A, He and Ng) and differentiation (FIS and FST) for each species and explored their potential drivers using a model‐selection approach with four fragment features (size, historical and current connectivity, and stability) as predictor variables. Results Regional‐scale genetic diversity increased from the shortest‐lived to the longest‐lived species, while population differentiation of the self‐compatible species was roughly double that of the three self‐incompatible species. Fragment size was the only feature that did not consistently affect the genetic diversity of local populations across all species. Three species showed signs of being affected by fragmentation, yet each responded differently to the set of fragment features considered. We observed several trends that were at odds with simple life history‐based predictions but could arise from patterns of gene flow and/or local‐scale demographic processes. Main conclusions Our comparative study of various landscape features and species underscores that the same fragmentation process can have very different, and complex, consequences for the population genetic structure of plants. This idiosyncrasy renders generalizations across natural systems very difficult and highlights the need of context‐oriented guidelines for an efficient conservation management of species‐rich landscapes.  相似文献   

13.
Naturally patchy ecosystems are models for other systems currently undergoing anthropogenic habitat fragmentation. Understanding patterns of gene flow in these model systems can help us manage species and ecosystems threatened by human impacts. The mound springs of central Australia represent such a natural model ecosystem, supporting a unique aquatic fauna distributed within an inhospitable arid landscape. Moreover, these springs are being impacted by over extraction of groundwater, providing a unique opportunity to look at dispersal in a patchy habitat that is changing. The present study represents the first fine scale analysis of gene flow under different scenarios of habitat connectivity for the endangered mound spring snail, Fonscochlea accepta. Within a single spring group pairwise estimates of F ST between springs were very low (ave 0.015) with no association found between genetic distance and a series of geographical distance matrices based on the degree of habitat connectivity among the springs: results implying unstructured dispersal and limited population isolation. However, results from Bayesian assignment tests showed that on average approximately 97% of snails were assigned to their spring of origin. In a preliminary analysis at broader geographic scales (among spring groups) the results from F ST estimates, Mantel correlation analyses and assignment tests all suggest much stronger and geographically correlated population structuring. While varying results from F-statistics and Bayesian analyses stem from the different information they utilise, together they provide data on contemporary and historical estimates of gene flow and the influence of landscape dynamics on the spatial genetic patterning of the springs.  相似文献   

14.
Coccoloba cereifera (Polygonaceae) is an extremely rare endemic shrub found exclusively in the rupestrian fields of Serra do Cipó, southeastern, Brazil. We assessed the genetic diversity and structure across the single occurrence area of C. cereifera. The genetic variation at 13 microsatellite loci was estimated from 139 individuals sampled in nine patches. The number of alleles per locus varied from two to ten; the expected and observed heterozygosity ranged from 0.324 to 0.566 and 0.337 to 0.529, respectively. Microsatellites detected low but statistically significant levels of differentiation among patches (F ST = 0.123, R ST = 0.105), whereas Mantel test results showed a weak but significant pattern of isolation by distance (r 2 = 0.31, P < 0.002). Bayesian clustering indicated two subdivisions connected via admixture. Habitat heterogeneity across the drainage basin of the Rio Indequicé is likely limiting gene flow within patches of the geographically restricted population. While there is currently no evidence for a direct genetic risk to species survival, the apparent natural segregation occurring within the species could be exacerbated by future land use changes and the influx of alien species which could lead to demographic reductions in population size leading to a reduction in genetic diversity and an increase in population subdivision. We suggest that maintaining the integrity of the habitat within the small range of the species and continued monitoring of the effects of alien species would be the wisest use of management resources.  相似文献   

15.
Habitat loss and fragmentation can influence the genetic structure of biological populations. We studied the genetic consequences of habitat fragmentation in Florida black bear (Ursus americanus floridanus) populations. Genetic samples were collected from 339 bears, representing nine populations. Bears were genotyped for 12 microsatellite loci to estimate genetic variation and to characterize genetic structure. None of the nine study populations deviated from Hardy–Weinberg equilibrium. Genetic variation, quantified by mean expected heterozygosity (H E), ranged from 0.27 to 0.71 and was substantially lower in smaller and less connected populations. High levels of genetic differentiation among populations (global F ST = 0.224; global R ST = 0.245) suggest that fragmentation of once contiguous habitat has resulted in genetically distinct populations. There was no isolation-by-distance relationship among Florida black bear populations, likely because of barriers to gene flow created by habitat fragmentation and other anthropogenic disturbances. These factors resulted in genetic differentiation among populations, even those that were geographically close. Population assignment tests indicated that most individuals were genetically assigned to the population where they were sampled. Habitat fragmentation and anthropogenic barriers to movement appear to have limited the dispersal capabilities of the Florida black bear, thereby reducing gene flow among populations. Regional corridors or translocation of bears may be needed to restore historical levels of genetic variation. Our results suggest that management actions to mitigate genetic consequences of habitat fragmentation are needed to ensure long-term persistence of the Florida black bear.  相似文献   

16.
With increasing human activities and associated landscape changes, distributions of terrestrial mammals become fragmented. These changes in distribution are often associated with reduced population sizes and loss of genetic connectivity and diversity (i.e., genetic erosion) which may further diminish a species' ability to respond to changing environmental conditions and lead to local population extinctions. We studied threatened boreal caribou (Rangifer tarandus caribou) populations across their distribution in Ontario/Manitoba (Canada) to assess changes in genetic diversity and connectivity in areas of high and low anthropogenic activity. Using data from >1,000 caribou and nine microsatellite loci, we assessed population genetic structure, genetic diversity, and recent migration rates using a combination of network and population genetic analyses. We used Bayesian clustering analyses to identify population genetic structure and explored spatial and temporal variation in those patterns by assembling networks based on RST and FST as historical and contemporary genetic edge distances, respectively. The Bayesian clustering analyses identified broad‐scale patterns of genetic structure and closely aligned with the RST network. The FST network revealed substantial contemporary genetic differentiation, particularly in areas presenting contemporary anthropogenic disturbances and habitat fragmentation. In general, relatively lower genetic diversity and greater genetic differentiation were detected along the southern range limit, differing from areas in the northern parts of the distribution. Moreover, estimation of migration rates suggested a northward movement of animals away from the southern range limit. The patterns of genetic erosion revealed in our study suggest ongoing range retraction of boreal caribou in central Canada.  相似文献   

17.
Montane species distributions interrupted by valleys can lead to range fragmentation, differentiation and ultimately speciation. Paleoclimatic fluctuations may accentuate or reduce such diversification by temporally altering the extent of montane habitat and may affect species differentially. We examined how an entire montane bird community of the Western Ghats—a linear, coastal tropical mountain range—responds to topographic valleys that host different habitats. Using genetic data from 23 species (356 individuals) collected across nine locations, we examined if different species in the community reveal spatial concordance in population differentiation, and whether the timing of these divergences correlate with climatic events. Our results reveal a nested effect of valleys, with several species (10 of 23) demonstrating the oldest divergences associated with the widest and deepest valley in the mountain range, the Palghat Gap. Further, a subset of these 10 species revealed younger divergences across shallower, narrower valleys. We recovered discordant divergence times for all valley-affected montane birds, mostly in the Pleistocene, supporting the Pliestocene-pump hypotheses and highlighting the role of climatic fluctuations during this period in driving species evolution. A majority of species remain unaffected by valleys, perhaps owing to geneflow or extinction–recolonization dynamics. Studying almost the entire community allowed us to uncover a range of species’ responses, including some generalizable and other unpredicted patterns.  相似文献   

18.
The impact of recent habitat fragmentation on population genetic diversity and structure has often been studied, mainly related to anthropogenic causes; however its long-term effect has been much less evaluated. In this study we analyzed the genetic variability of Orestias ascotanensis, a fish endemic to the Ascotán salt pan of Chile. This species, which formed a single and large population during the last wet period that ended 10,000 years ago, is currently represented by small populations inhabiting freshwater springs on the eastern border of the salt pan. Therefore, this species represents a unique model to evaluate the consequences of a drastic habitat fragmentation process that initiated thousands of years ago. Analysis of the control region of the mitochondrial DNA revealed high genetic diversity (haplotipic diversity ranged between 0.78 and 0.94) and marked differences among populations (ΦST = 0.46). Estimated effective population sizes greatly surpassed the real sizes, particularly among springs that remained connected. These results reflect the long-term consequences of habitat fragmentation on natural populations: structuring of the populations and loss of genetic diversity of the isolated fragments.  相似文献   

19.
Habitat fragmentation and landscape topology may influence the genetic structure and connectivity between natural populations. Six microsatellite loci were used to infer the population structure of 35 populations (N = 788) of the alpine Arabian burnet moth Reissita simonyi (Lepidoptera, Zygaenidae) in Yemen and Oman. Due to the patchy distribution of larval food plants, R. simonyi is not continuously distributed throughout the studied area and the two recognized subspecies of this endemic species (Reissita s. simonyi/R. s. yemenicola) are apparently discretely distributed. All microsatellites showed prevalence of null alleles and therefore a thorough investigation of the impact of null alleles on different population genetic parameters (F ST, inbreeding coefficients, and Population Graph topologies) is given. In general, null alleles reduced genetic covariance and independence of allele frequencies resulting in a more connected genetic topology in Population Graphs and an overestimation of pairwise F ST values and inbreeding coefficients. Despite the presence of null alleles, Population Graphs also showed a much higher genetic connectivity within subspecies (and lower genetic differentiation (via F ST)) than between; supporting existing taxonomic distinction. Partial Mantel tests showed that both geographical distance and altitude were highly correlated with the observed distribution of genetic structure within R. simonyi. In conclusion, we identified geographical and altitudinal distances in R. simonyi as well as an intervening desert area to be the main factors for spatial genetic structure in this species and show that the taxonomic division into two subspecies is confirmed by genetic analysis.  相似文献   

20.
We consider whether changes in population-genetic structure through the life cycle of Cecropia obtusifolia, a tropical pioneer tree, reflect its gap-dependent demography and the role of evolutionary processes that are important for this species. We asked whether the spatial scale at which population-genetic subdivision occurs corresponds to the scale of habitat patchiness created by gap dynamics; whether patterns of seed dispersal and storage in the soil affect spatial genetic patterns; and whether spatial genetic patterns change through the species life cycle. We estimated Wright's F-statistics for six successive life-history stages for individuals grouped into subpopulations according to occurrence in natural gaps, physical proximity, or occurrence within large quadrats. For each life stage, FST-statistics were significantly higher when individuals were grouped by gaps, although concordant patterns across life stages for the three grouping methods were obtained. This supports the hypothesis that patchy recruitment in gaps or among-gap heterogeneity influences the species' genetic structure. F-statistics of seeds collected from females before dispersal (tree seeds), seed-rain seeds, soil seeds, seedlings, juveniles, and adults grouped by gaps, were, respectively: FIT = 0.004, 0.160, 0.121, 0.091, –0.0002, –0.081; FIS = –0.032, 0.124, 0.118, 0.029, –0.016, –0.083; and FST = 0.035, 0.041, 0.003, 0.063, 0.015, 0.002. Spatial genetic differentiation in rain seeds was not significantly lower than that of tree seeds. The loss of genetic structure in the soil seed bank, relative to that found in the seed rain may be due to sampling artifacts, but alternative explanations, such as microsite selection or temporal Wahlund effect are also discussed. If structure among soil seeds is unbiased, the peak in seedling FST may be due to microsite selection. FIS of seeds in the rain and soil were significantly greater than zero. A Wahlund effect is the most likely cause of these positive FIS values. Such fine-scale substructuring could be caused by correlated seed deposition by frugivores. The decrease in FIS from seedlings to adults could result from loss of fine-scale genetic structure during stand thinning or from selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号