首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNase III–related enzymes play key roles in cleaving double-stranded RNA in many biological systems. Among the best-known are RNase III itself, involved in ribosomal RNA maturation and mRNA turnover in bacteria, and Drosha and Dicer, which play critical roles in the production of micro (mi)–RNAs and small interfering (si)–RNAs in eukaryotes. Although RNase III has important cellular functions in bacteria, its gene is generally not essential, with the remarkable exception of that of Bacillus subtilis. Here we show that the essential role of RNase III in this organism is to protect it from the expression of toxin genes borne by two prophages, Skin and SPβ, through antisense RNA. Thus, while a growing number of organisms that use RNase III or its homologs as part of a viral defense mechanism, B. subtilis requires RNase III for viral accommodation to the point where the presence of the enzyme is essential for cell survival. We identify txpA and yonT as the two toxin-encoding mRNAs of Skin and SPβ that are sensitive to RNase III. We further explore the mechanism of RNase III–mediated decay of the txpA mRNA when paired to its antisense RNA RatA, both in vivo and in vitro.  相似文献   

3.
Ribonucleases J1 and J2 are recently discovered enzymes with dual 5′‐to‐3′ exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild‐type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5′‐to‐3′ exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.  相似文献   

4.
5.
6.
Small cytoplasmic RNA (scRNA) of Bacillus subtilis is the RNA component of the signal recognition particle. scRNA is transcribed as a 354-nt precursor, which is processed to the mature 271-nt scRNA. Previous work demonstrated the involvement of the RNase III-like endoribonuclease, Bs-RNase III, in scRNA processing. Bs-RNase III was found to cleave precursor scRNA at two sites (the 5′ and 3′ cleavage sites) located on opposite sides of the stem of a large stem-loop structure, yielding a 275-nt RNA, which was then trimmed by a 3′ exoribonuclease to the mature scRNA. Here we show that Bs-RNase III cleaves primarily at the 5′ cleavage site and inefficiently at the 3′ site. RNase J1 is responsible for much of the cleavage that releases scRNA from downstream sequences. The subsequent exonucleolytic processing is carried out largely by RNase PH.  相似文献   

7.
The essential type of endonuclease that removes 5′ leader sequences from transfer RNA precursors is called RNase P. While ribonucleoprotein RNase P enzymes containing a ribozyme are found in all domains of life, another type of RNase P called ‘PRORP’, for ‘PROtein‐only RNase P’, is composed of protein that occurs only in a wide variety of eukaryotes, in organelles and in the nucleus. Here, to find how PRORP functions integrate with other cell processes, we explored the protein interaction network of PRORP1 in Arabidopsis mitochondria and chloroplasts. Although PRORP proteins function as single subunit enzymes in vitro, we found that PRORP1 occurs in protein complexes and is present in high‐molecular‐weight fractions that contain mitochondrial ribosomes. The analysis of immunoprecipitated protein complexes identified proteins involved in organellar gene expression processes. In particular, direct interaction was established between PRORP1 and MNU2 a mitochondrial nuclease. A specific domain of MNU2 and a conserved signature of PRORP1 were found to be directly accountable for this protein interaction. Altogether, results revealed the existence of an RNA maturation complex in Arabidopsis mitochondria and suggested that PRORP proteins cooperated with other gene expression factors for RNA maturation in vivo.  相似文献   

8.
Ribonuclease P (RNase P) is a key enzyme involved in tRNA biosynthesis. It catalyses the endonucleolytic cleavage of nearly all tRNA precursors to produce 5-end matured tRNA. RNase P activity has been found in all organisms examined, from bacteria to mammals. Eubacterial RNase P RNA is the only known RNA enzyme which functionsin trans in nature. Similar behaviour has not been demonstrated in RNase P enzymes examined from archaebacteria or eukaryotes. Characterisation of RNase P enzymes from more diverse eukaryotic species, including the slime moldDictyostelium discoideum, is useful for comparative analysis of the structure and function of eukaryotic RNase P.Abbreviations RNase P ribonuclease P - MN micrococcal nuclease  相似文献   

9.
Corynebacterium glutamicum has one RNase E/G ortholog and one RNase J ortholog but no RNase Y. We previously reported that the C. glutamicum NCgl2281 gene encoding the RNase E/G ortholog complemented the rng::cat mutation in Escherichia coli but not the rne-1 mutation. In this study, we constructed an NCgl2281 knockout mutant and found that the mutant cells accumulated 5S rRNA precursor molecules. The processing of 16S and 23S rRNA, tRNA, and tmRNA was normal. Primer extension analysis revealed that the RNase E/G ortholog cleaved at the −1 site of the 5′ end of 5S rRNA. However, 3′ maturation was essentially unaffected. These findings showed that C. glutamicum NCgl2281 endoribonuclease is involved in the 5′ maturation of 5S rRNA. This is the first report showing the physiological function of the RNase E/G ortholog in bacteria having one RNase E/G and one RNase J but no RNase Y.  相似文献   

10.
11.
Summary TheBacillus subtilis small cytoplasmic RNA (scRNA) has an important, although not yet defined function in protein biosynthesis. Here we describe the mapping of the single copy scRNA gene and the flanking homolog todnaZX ofEscherichia coli, termed dnaX. The scRNA gene region of aB. subtilis wild-type strain was marked with acat gene and mapped by scoring chromosomal co-transformation rates of various mutant strains to chloramphenicol resistance and loss of the mutant phenotypes, respectively. This analysis, together with anEcoRI map comparison, places the scRNA gene anddnaX in the vicinity ofrecM near the replication origin region ofB. subtilis.  相似文献   

12.
13.
14.
Ribonuclease P (RNase P) is involved in the processing of the 5′ leader sequence of precursor tRNA (pre-tRNA). We have found that RNase P RNA (PhopRNA) and five proteins (PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38) reconstitute RNase P activity with enzymatic properties similar to those of the authentic ribozyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. We report here that nucleotides A40, A41, and U44 at helix P4, and G269 and G270 located at L15/16 in PhopRNA, are, like the corresponding residues in Esherichia coli RNase P RNA (M1RNA), involved in hydrolysis by coordinating catalytic Mg2+ ions, and in the recognition of the acceptor end (CCA) of pre-tRNA by base-pairing, respectively. The information reported here strongly suggests that PhopRNA catalyzes the hydrolysis of pre-tRNA in approximately the same manner as eubacterial RNase P RNAs, even though it has no enzymatic activity in the absence of the proteins.  相似文献   

15.
16.
There are at least six small stable RNAs inMycoplasma capricolum cells besides tRNAs and rRNAs. One of them, MCS5 RNA, is a homolog of RNase P RNA. The predicted secondary structure of this RNA is essentially the same as that of other eubacterial RNase P RNAs. MCS5 RNA is more similar to the RNase P RNA ofB. subtilis than to that ofE. coli. This is consistent with previous conclusions that mycoplasmas are phylogenetically related to the low G+C Gram-positive bacterial group. The major substrates for MCS5 RNA must be the precursors of tRNAs. The precursor of MCS6 RNA, which is a homolog of theE. coli 10Sa RNA, may also be a substrate for the MCS5 RNA because this RNA has a tRNA-like structure at its 5 and 3 ends.  相似文献   

17.
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.  相似文献   

18.
19.
In most organisms, dedicated multiprotein complexes, called exosome or RNA degradosome, carry out RNA degradation and processing. In addition to varying exoribonucleases or endoribonucleases, most of these complexes contain a RNA helicase. In the Gram‐positive bacterium Bacillus subtilis, a RNA degradosome has recently been described; however, no RNA helicase was identified. In this work, we tested the interaction of the four DEAD box RNA helicases encoded in the B. subtilis genome with the RNA degradosome components. One of these helicases, CshA, is able to interact with several of the degradosome proteins, i.e. RNase Y, the polynucleotide phosphorylase, and the glycolytic enzymes enolase and phosphofructokinase. The determination of in vivo protein–protein interactions revealed that CshA is indeed present in a complex with polynucleotide phosphorylase. CshA is composed of two RecA‐like domains that are found in all DEAD box RNA helicases and a C‐terminal domain that is present in some members of this protein family. An analysis of the contribution of the individual domains of CshA revealed that the C‐terminal domain is crucial both for dimerization of CshA and for all interactions with components of the RNA degradosome, including RNase Y. A transfer of this domain to CshB allowed the resulting chimeric protein to interact with RNase Y suggesting that this domain confers interaction specificity. As a degradosome component, CshA is present in the cell in similar amounts under all conditions. Taken together, our results suggest that CshA is the functional equivalent of the RhlB helicase of the Escherichia coli RNA degradosome.  相似文献   

20.

Key message

Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5′ exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation.

Abstract

RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5′ end maturation is thought to be achieved by the combined action of a 5′ exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5′ exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5′ exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5′ exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号