首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.  相似文献   

2.
Recent studies suggest that hatchery-reared fish can have smaller brain-to-body size ratios than wild fish. It is unclear, however, whether these differences are due to artificial selection or instead reflect differences in rearing environment during development. Here we explore how rearing conditions influence the development of two forebrain structures, the olfactory bulb and the telencephalon, in juvenile Chinook salmon (Oncorhynchus tshawytscha) spawned from wild-caught adults. First, we compared the sizes of the olfactory bulb and telencephalon between salmon reared in a wild stream vs. a conventional hatchery. We next compared the sizes of forebrain structures between fish reared in an enriched NATURES hatchery and fish reared in a conventional hatchery. All fish were size-matched and from the same genetic cohort. We found that olfactory bulb and telencephalon volumes relative to body size were significantly larger in wild fish compared to hatchery-reared fish. However, we found no differences between fish reared in enriched and conventional hatchery treatments. Our results suggest that significant differences in the volume of the olfactory bulb and telencephalon between hatchery and wild-reared fish can occur within a single generation.  相似文献   

3.
Using social media, the Greenland Institute of Natural Resources collected data on the occurrence of pink salmon (Oncorhynchus gorbuscha) in 2019. Eighty-four pink salmon were reported from 22 locations across Greenland. This comprised 76 specimens from 2019 and 8 specimens from 2013 to 2018. Of these, 12 were caught in fresh water, and a single pink salmon was from the bottom of the Nuuk Fjord near the Kapisillit River – the only known river in Greenland where the Atlantic salmon (Salmo salar) spawn. It is unknown if pink salmon have reproduced in Greenland waters.  相似文献   

4.
Multilocus heterozygosity, aggressive and feeding behaviour, plasma cortisol levels and growth rate were evaluated among three groups of juvenile Chinook salmon Oncorhynchus tshawytscha : diploid, triploid and mixed groups of diploid and triploid fish. There was no difference between diploid and triploid fish in measurements of heterozygosity calculated using seven microsatellite loci, and these measurements did not correlate with performance measurements including feeding rate and growth rate. Aggression trials that examined small groups of fish revealed that after 4 days together in tanks, triploid fish were significantly less aggressive during feeding than diploid fish or fish in mixed groups. At the end of the trials, however, plasma cortisol levels did not differ among the three groups. Thirty-day growth trials in duplicate tanks of 60 fish revealed no difference in growth rate among diploid, triploid and mixed groups, but plasma cortisol levels were significantly lower in triploid fish than in either diploid fish or the mixed fish. Overall, independent of the above differences in aggressive behaviour and cortisol levels, these results suggest similar performance in diploid and triploid Chinook salmon, and thus provide support for the viability of triploid Chinook salmon culture in commercial aquaculture.  相似文献   

5.
This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23° C on the surface to 11° C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20° C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5·6–7·2 h and 6·0–13·8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16–20° C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16–20° C when temperatures <16 and >20° C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17·0° C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16–20° C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.  相似文献   

6.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

7.
We tested the prediction that a complex physical rearing environment would enhance short-term spatial memory as assessed by learning ability in a spatial navigation task in juvenile Chinook salmon Oncorhynchus tshawytscha. We reared fish in two low-density treatments, where fish were either in bare fiberglass tanks (bare) or in tanks with physical structure (complex). We also tested conventionally reared high-density hatchery fish to compare with these other experimental treatments. Our reason for including this third hatchery treatment is that the two low-density treatments, aside from the manipulation of structure, followed a rearing programme that is designed to produce fish with more wild-like characteristics. We tested individually marked fish for seven consecutive days and recorded movement and time to exit a testing maze. Stimulus conspecific fish outside the exit of the maze provided positive reinforcement for test fish. Fish from the bare treatment were less likely to exit the start box compared with fish in the complex and hatchery treatments. However, fish in the hatchery treatment were significantly more likely to exit the maze on their own compared with both the bare and complex treatments. Hatchery fish effectively learned the task as shown by a decrease in the number of mistakes over time, but the number of mistakes was significantly greater on the first day of trials. Increasing habitat complexity with structure may not necessarily promote spatial learning ability, but differences between hatchery and experimental treatments in rearing density and motivation to be near conspecifics likely led to observed behavioural differences.  相似文献   

8.
The effects of three anaesthetics on induction and recovery were compared in Chinook salmon (Oncorhynchus tshawytscha). Heart rate (HR), cardiac output (Q), dorsal aortic pressure (DAP) and stroke volume (SV) were measured in minimally disturbed salmon during 5 min anaesthetic inductions with approximately equi-potent concentrations of MS222 (100 ppm), metomidate (6-10 ppm) and AQUI-S (60 ppm). MS222 induction caused a steady decline in DAP only, while metomidate induction did not affect any cardiovascular variable. AQUI-S caused a biphasic response, and within 2 min had depressed HR, Q, DAP and SV by between 20 and 50%. In the final 3 min HR returned to pre-anaesthesia levels, and Q and SV climbed to greater than pre-anaesthesia levels. Blood samples taken pre- and post-anaesthesia showed all inductions caused hypoxaemia (oxygen partial pressure of dorsal aortic blood (PaO2): MS222 47 mmHg, metomidate 35 mmHg, AQUI-S 21 mmHg). Haematocrit and plasma adrenaline and noradrenaline levels increased slightly in AQUI-S treated fish only. Recovery was monitored for 6 h post-anaesthesia, and was similar for each anaesthetic. All cardiovascular variables had returned to control levels within 5 min with the exception of DAP, which was initially slightly elevated (up to 20%) but returned to control values within 30 min. Anaesthesia is usually preceded by handling. Netting prior to anaesthesia caused significant increases in HR, Q and SV, which masked any anaesthetic dependent effects. Recovery from anaesthesia combined with surgery was also generally anaesthetic independent and recovery was prolonged, compared to anaesthesia alone. These data suggest limiting fish handling/manipulation is more important in minimising cardiovascular disturbance than the choice of anaesthetic.  相似文献   

9.
The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, L ETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult L ETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.  相似文献   

10.
This study examined whether polyandrous female Chinook salmon Oncorhynchus tshawytscha obtain benefits compared with monandrous females through an increase in hatching success. Both of the alternative reproductive tactics present in male O. tshawytscha (large hooknoses and small, precocious jacks) were used, such that eggs were either fertilized by a single male (from each tactic) or multiple males (using two males from the same or different tactics). The results show that fertilized eggs from the polyandrous treatments had a significantly higher hatching success than those from the monandrous treatments. It is also shown that sperm speed was positively related with offspring hatching success. Finally, there were tactic‐specific effects on the benefits females received. The inclusion of jacks in any cross resulted in offspring with higher hatching success, with the cross that involved a male from each tactic providing offspring with the highest hatching success than any other cross. This study has important implications for the evolution of multiple mating and why it is so prevalent across taxa, while also providing knowledge on the evolution of mating systems, specifically those with alternative reproductive tactics.  相似文献   

11.
Renibacterium salmoninarum causes bacterial kidney disease (BKD), a chronic and sometimes fatal disease of salmon and trout that could lower fitness in populations with high prevalences of infection. Prevalence of R. salmoninarum infection among juvenile Chinook salmon Oncorhynchus tshawytscha inhabiting neritic marine habitats in North Puget Sound, Washington, USA, was assessed in 2002 and 2003. Fish were collected by monthly surface trawl at 32 sites within 4 bays, and kidney infections were detected by a quantitative fluorescent antibody technique (qFAT). The sensitivity of the qFAT was within an order of magnitude of the quantitative real-time PCR (qPCR) sensitivity. Prevalence of infection was classified by fish origin (marked/hatchery vs. unmarked/likely natural spawn), month of capture, capture location and stock origin. The highest percentages of infected fish (63.5 to 63.8%) and the greatest infection severity were observed for fish collected in Bellingham Bay. The lowest percentages were found in Skagit Bay (11.4 to 13.5%); however, there was no difference in prevalence between marked and unmarked fish among the capture locations. The optimal logistic regression model of infection probabilities identified the capture location of Bellingham Bay as the strongest effect, and analysis of coded wire tagged (CWT) fish revealed that prevalence of infection was associated with the capture location and not with the originating stock. These results suggest that infections can occur during the early marine life stages of Chinook salmon that may be due to common reservoirs of infection or horizontal transmission among fish stocks.  相似文献   

12.
A knowledge of genetic structure in natural populations is often necessary for conservation and management purposes, especially in declining Pacific salmon populations. To test for genetic differentiation between nine populations of chinook salmon, Oncorhynchus tshawytscha, from south-western British Columbia, Canada, DNA was extracted from 603 fish and hybridized with a single-locus minisatellite probe. Multivariate statistical analyses of the resulting allele size data permitted successful overall population identification of 52% (individual population range: 24–78%; P < 0.005), indicating a high level of genetic differentiation among the nine populations. Two of the nine populations were further analysed using data from a second minisatellite locus. The discrimination success rate improved from 81.1% (one-locus analyses) to 90.0% (two-locus analyses), indicating the potential for greatly increased resolution gained by the addition of more loci. These results indicate that variation at minisatellite loci can be used for assessing population-level genetic structure, even with artificial gene flow.  相似文献   

13.
Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged improvements in mapping and genotyping methods to create a dense linkage map for Chinook salmon Oncorhynchus tshawytscha by assembling family data from different sources. We successfully mapped 14 620 SNP loci including 2336 paralogs in subtelomeric regions. This improved map was then used as a foundation to integrate genomic resources for gene annotation and population genomic analyses. We anchored a total of 286 scaffolds from the Atlantic salmon genome to the linkage map to provide a framework for the placement 11 728 Chinook salmon ESTs. Previously identified thermotolerance QTL were found to colocalize with several candidate genes including HSP70, a gene known to be involved in thermal response, as well as its inhibitor. Multiple regions of the genome with elevated divergence between populations were also identified, and annotation of ESTs in these regions identified candidate genes for fitness related traits such as stress response, growth and behaviour. Collectively, these results demonstrate the utility of combining genomic resources with linkage maps to enhance evolutionary inferences.  相似文献   

14.
15.
We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural‐origin and 11594 hatchery‐origin fish, we estimated that the rate of homing to natal tributaries by natural‐origin fish ranged from 0% to 99% depending on the tributary. Hatchery‐origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural‐origin fish (71% compared to 96%). For hatchery‐released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural‐origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery‐produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural‐origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary‐specific estimates of effective population size were also correlated with the number of spawners in each tributary.  相似文献   

16.
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene‐targeted PCR‐based assay for next‐generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single‐gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.  相似文献   

17.
Following a relatively large meal (2% body mass of dry pellets), intestinal blood flow in chinook salmon (Oncorhynchus tshawytscha) increased significantly, up to 81%, between 14 and 29 h postprandially. Also, 15 h postprandially, oxygen consumption (M(2)) was elevated by 128% compared with a measurement of routine M(2) made after 1 wk of fasting. The postprandial increase in MO(2) (the heat increment) was 33 micromol O(2) min(-1) kg(-1). Because intestinal blood flow is known to decrease during swimming activity in fish, we therefore tested the hypothesis that swimming fish would have to make a trade-off between maximum swimming activity and digestive activity by comparing the swimming performance and metabolic rates of fed and fasted chinook salmon. As expected, MO(2) increased exponentially with swimming velocity in both fed and fasted fish. Moreover, the heat increment was irreducible during swimming, such that MO(2) remained approximately 39 micromol O(2) min(-1) kg(-1) higher in fed fish than in fasted fish at all comparable swimming speeds. However, maximum M dot o2 was unaffected by feeding and was identical in both fed and fasted fish (approximately 250 micromol O(2) min(-1) kg(-1)), and, as a result, the critical swimming speed (U(crit)) was 9% lower in the fed fish. Three days after the fish were fed and digestion was completed, MO(2) and U(crit) were not significantly different from those measured in fasted fish. The ability of salmonids to maintain feeding metabolism during prolonged swimming performance is discussed, and it is suggested that reduced swimming performance may be due to postprandial sparing of intestinal blood to support digestion, thereby limiting the allocation of blood flow to locomotory muscles.  相似文献   

18.
Induced triploidy (3N) in salmon results from a blockage of maternal meiosis II, and hence provides a unique opportunity to study dosage effects on phenotypic variance. Chinook salmon families were bred using a paternal half-sib breeding design (62 females and 31 males) and half of each resulting family was treated to induce triploidy. The paired families were used to test for dosage effects (resulting from triploidy) on (1) the distribution and magnitude of phenotypic variation, (2) narrow-sense heritability and (3) maternal effects in fitness-related traits (i.e., survival, size-at-age, relative growth rate and serum lysozyme activity). Quantitative genetic analyses were performed separately for diploid and triploid family groups. Triploidization resulted in significantly higher levels of phenotypic variance and substantial differences in patterns of variance distribution for growth and survival-related traits, although the patterns were reversed for lysozyme activity. Triploids exhibited higher narrow sense heritability values relative to diploid Chinook salmon. However, maternal effects estimates were generally lower in triploids than in diploids. Thus, the dosage effects resulting from adding an extra set of chromosomes to the Chinook salmon genome are primarily additive. Somewhat counterintuitively, however, the relative magnitude of the combined effects of dominance, epistasis and maternal effects is not affected by dosage. Our results indicate that inheritance of fitness-related quantitative traits is profoundly affected by dosage effects associated with induced triploidy, and that triploidization can result in unpredictable performance and fitness outcomes.  相似文献   

19.
The DNA sequences of four exons of the MHC (major histocompatibilty complex) were examined in chinook salmon ( Oncorhynchus tshawytscha ) from an interior (Nechako River) and a coastal (Harrison River) population in the Fraser River drainage of British Columbia. Mhc class I A1, A2 and A3 sequences and a class II B1 sequence were obtained by PCR from each of 16–20 salmon from each population. The class I A1 and a pair of linked A2–A3 exons were derived from two different classical salmonid class I genes, Sasa-A and Onmy-UA , respectively. Allelic variation for B1, A1 and A2 was characterized by the high levels of nonsynonymous substitution indicative of the effects of natural selection on Mhc domains that contain peptide binding regions. The number of alleles detected at each of the four exons ranged from three ( B1 ) to 22 ( A1 ), but levels of nucleotide sequence divergence at all four exons were low relative to classical mammalian Mhc genes. The nucleotide similarity among alleles ranged between 89 and 99% over all exons, and all four domains possessed only two major sequence motifs. Allelic distributions at B1, A1 and A3 confirmed the genetic distinctiveness of the Harrison and Nechako chinook salmon populations revealed in previous studies. The two major allelic motifs of B1 and A1 segregated strongly between the populations. In spite of evidence that allelic diversity at these chinook salmon Mhc exons has been generated by selection, the level and distribution of diversity in the two salmon populations strongly reflected the demographic history of the species, which has been characterized by repeated bottlenecks and isolation-by-distance in glacial refugia.  相似文献   

20.
Captive rearing is a conservation strategy where juveniles are collected from the natural environment, reared to maturity in a hatchery environment, and then released back into the natural environment at maturity for volitional spawning. This strategy has been used to produce adult outplants for stock enhancement where natural escapement is poor or capture of adults is difficult. In both Idaho (Chinook salmon, Oncorhynchus tshawytscha) and Maine (Atlantic salmon, Salmo salar), captive rearing programs have been initiated as an experimental strategy to prevent cohort collapse and conserve genetic integrity of select depressed populations. In this paper, we provide an overview of these programs and describe some of the methods used to evaluate the effectiveness of this approach. Behaviors such as habitat selection, courting, and spawn timing were monitored. Data collected for both programs indicate that the captive fish display similar behaviors as their wild conspecifics in terms of habitat selection and spawning, although there were some differences in spawn timing. Evaluations of egg and fry production also indicate that captive-reared adults are successfully spawning and producing offspring. Each program is still waiting on final evaluations of reproductive success through genetic analyses of returning adults, but results so far indicate that this could be an additional captive propagation strategy for depressed populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号