首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major goal of molecular ecology is to identify the causes of genetic and phenotypic differentiation among populations. Population genomics is suitably poised to tackle these key questions by diagnosing the evolutionary mechanisms driving divergence in nature. Here, we set out to investigate the evolutionary processes underlying population differentiation in the Gulf pipefish, Syngnathus scovelli. We sampled approximately 50 fish from each of 12 populations distributed from the Gulf coast of Texas to the Atlantic coast of Florida and performed restriction‐site‐associated DNA sequencing to identify SNPs throughout the genome. After imposing quality and stringency filters, we selected a panel of 6348 SNPs present in all 12 populations, 1753 of which were not physically linked. We identified a genome‐wide pattern of isolation by distance, in addition to a more substantial genetic break separating populations in the Gulf of Mexico from those in the Atlantic. We also used several divergence outlier approaches and tests for genotype–environment correlations to identify 400 SNPs putatively involved in local adaptation. Patterns of phenotypic differentiation and variation diverged from the overall genomic pattern, suggesting that selection, phenotypic plasticity or demographic factors may be shaping phenotypes in distinct populations. Overall, our results suggest that population divergence is driven by a variety of factors in S. scovelli, including neutral processes and selection on multiple traits.  相似文献   

2.
3.
Specialization in narrow ecological niches may not only help species to survive in competitive or unique environments but also contribute to their extermination over evolutionary time. Although the “evolutionary dead end” hypothesis has long been debated, empirical evidence from species with detailed information on niche specialization and evolutionary history remains rare. Here we use a group of four closely related Cnemaspis gecko species that depend highly on granite boulder caves in the Mekong Delta to investigate the potential impact of ecological specialization on their evolution and population dynamics. Isolated by unsuitable floodplain habitats, these boulder‐dwelling geckos are among the most narrowly distributed Squamata in the world. We applied several coalescence‐based approaches combined with the RAD‐seq technique to estimate their divergence times, gene flow and demographic fluctuations during the speciation and population differentiation processes. Our results reveal long‐term population shrinkage in the four geckos and limited gene flow during their divergence. The results suggest that the erosion and fragmentation of the granite boulder hills have greatly impacted population divergence and declines. The habitat specialization of these geckos has led to fine‐scaled speciation in these granite rocky hills; in contrast, specialization might also have pushed these species toward the edge of extinction. Our study also emphasizes the conservation urgency of these vulnerable, cave‐dependent geckos.  相似文献   

4.
With increasing urbanization, urban‐fragmented landscapes are becoming more and more prevalent worldwide. Such fragmentation may lead to small, isolated populations that face great threats from genetic factors that affect even avian species with high dispersal propensities. Yet few studies have investigated the population genetics of species living within urban‐fragmented landscapes in the Old World tropics, in spite of the high levels of deforestation and fragmentation within this region. We investigated the evolutionary history and population genetics of the olive‐winged bulbul (Pycnonotus plumosus) in Singapore, a highly urbanized island which retains <5% of its original forest cover in fragments. Combining our own collected and sequenced samples with those from the literature, we conducted phylogenetic and population genetic analyses. We revealed high genetic diversity, evidence for population expansion, and potential presence of pronounced gene flow across the population in Singapore. This suggests increased chances of long‐term persistence for the olive‐winged bulbul and the ecosystem services it provides within this landscape.  相似文献   

5.
Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White‐nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis.  相似文献   

6.
Summary Any character that has a substantial effect on a species' distribution and abundance can exert a variety of indirect effects on evolutionary processes. It is suggested that an organism's capacity for habitat selection is just such a character. Habitat selection can constrain the selective environment experienced by a population. Habitat selection can also indirectly influence the relative importance of natural selection, drift, and gene flow, through its effect on population size and growth rate. In many circumstances (but not all), habitat selection increases population size and growth rate, and thereby makes selection in a local environment more effective than drift and gene flow.  相似文献   

7.
Recent advances in high‐throughput sequencing technologies provide opportunities to gain novel insights into the genetic basis of phenotypic trait variation. Yet to date, progress in our understanding of genotype–phenotype associations in nonmodel organisms in general and natural vertebrate populations in particular has been hampered by small sample sizes typically available for wildlife populations and a resulting lack of statistical power, as well as a limited ability to control for false‐positive signals. Here we propose to combine a genome‐wide association study (GWAS) and FST‐based approach with population‐level replication to partly overcome these limitations. We present a case study in which we used this approach in combination with genotyping‐by‐sequencing (GBS) single nucleotide polymorphism (SNP) data to identify genomic regions associated with Borrelia afzelii resistance or susceptibility in the natural rodent host of this Lyme disease‐causing spirochete, the bank vole (Myodes glareolus). Using this combined approach we identified four consensus SNPs located in exonic regions of the genes Slc26a4, Tns3, Wscd1 and Espnl, which were significantly associated with the voles’ Borrelia infectious status within and across populations. Functional links between host responses to bacterial infections and most of these genes have previously been demonstrated in other rodent systems, making them promising new candidates for the study of evolutionary host responses to Borrelia emergence. Our approach is applicable to other systems and may facilitate the identification of genetic variants underlying disease resistance or susceptibility, as well as other ecologically relevant traits, in wildlife populations.  相似文献   

8.
Genetic variation is of key importance for a species’ evolutionary potential, and its estimation is a major component of conservation studies. New DNA sequencing technologies have enabled the analysis of large portions of the genome in nonmodel species, promising highly accurate estimates of such population genetic parameters. Restriction site‐associated DNA sequencing (RADseq) is used to analyse thousands of variants in the bumble bee species Bombus impatiens, which is common, and Bombus pensylvanicus, which is in decline. Previous microsatellite‐based analyses have shown that gene diversity is lower in the declining B. pensylvanicus than in B. impatiens. RADseq nucleotide diversities appear much more similar in the two species. Both species exhibit allele frequencies consistent with historical population expansions. Differences in diversity observed at microsatellites thus do not appear to have arisen from long‐term differences in population size and are either recent in origin or may result from mutational processes. Additional research is needed to explain these discrepancies and to investigate the best ways to integrate next‐generation sequencing data and more traditional molecular markers in studies of genetic diversity.  相似文献   

9.
With shifts in island area, isolation, and cycles of island fusion–fission, the role of Quaternary sea‐level oscillations as drivers of diversification is complex and not well understood. Here, we conduct parallel comparisons of population and species divergence between two island areas of equivalent size that have been affected differently by sea‐level oscillations, with the aim to understand the micro‐ and macroevolutionary dynamics associated with sea‐level change. Using genome‐wide datasets for a clade of seven Amphiacusta ground cricket species endemic to the Puerto Rico Bank (PRB), we found consistently deeper interspecific divergences and higher population differentiation across the unfragmented Western PRB, in comparison to the currently fragmented Eastern PRB that has experienced extreme changes in island area and connectivity during the Quaternary. We evaluate alternative hypotheses related to the microevolutionary processes (population splitting, extinction, and merging) that regulate the frequency of completed speciation across the PRB. Our results suggest that under certain combinations of archipelago characteristics and taxon traits, the repeated changes in island area and connectivity may create an opposite effect to the hypothesized “species pump” action of oscillating sea levels. Our study highlights how a microevolutionary perspective can complement current macroecological work on the Quaternary dynamics of island biodiversity.  相似文献   

10.
The fluid nature of the ocean, combined with planktonic dispersal of marine larvae, lowers physical barriers to gene flow. However, divergence can still occur despite gene flow if strong selection acts on populations occupying different ecological niches. Here, we examined the population genomics of an ectoparasitic snail, Coralliophila violacea (Kiener 1836), that specializes on Porites corals in the Indo‐Pacific. Previous genetic analyses revealed two sympatric lineages associated with different coral hosts. In this study, we examined the mechanisms promoting and maintaining the snails’ adaptation to their coral hosts. Genome‐wide single nucleotide polymorphism (SNP) data from type II restriction site‐associated DNA (2b‐RAD) sequencing revealed two differentiated clusters of C. violacea that were largely concordant with coral host, consistent with previous genetic results. However, the presence of some admixed genotypes indicates gene flow from one lineage to the other. Combined, these results suggest that differentiation between host‐associated lineages of C. violacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed, 2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene flow, driven by adaptation of each C. violacea lineage to their specific coral hosts.  相似文献   

11.
Population genetic studies in nonmodel organisms are often hampered by a lack of reference genomes that are essential for whole‐genome resequencing. In the light of this, genotyping methods have been developed to effectively eliminate the need for a reference genome, such as genotyping by sequencing or restriction site‐associated DNA sequencing (RAD‐seq). However, what remains relatively poorly studied is how accurately these methods capture both average and variation in genetic diversity across an organism's genome. In this issue of Molecular Ecology Resources, Dutoit et al. (2016) use whole‐genome resequencing data from the collard flycatcher to assess what factors drive heterogeneity in nucleotide diversity across the genome. Using these data, they then simulate how well different sequencing designs, including RAD sequencing, could capture most of the variation in genetic diversity. They conclude that for evolutionary and conservation‐related studies focused on the estimating genomic diversity, researchers should emphasize the number of loci analysed over the number of individuals sequenced.  相似文献   

12.
Dispersal and local patterns of adaptation play a major role on the ecological and evolutionary trajectory of natural populations. In this study, we employ a combination of genetic (25 microsatellite markers) and field‐based information (seven study years) to analyse the impact of immigration and local patterns of adaptation in two nearby (< 7 km) blue tit (Cyanistes caeruleus) populations. We used genetic assignment analyses to identify immigrant individuals and found that dispersal rate is female‐biased (72%). Data on lifetime reproductive success indicated that immigrant females produced fewer local recruits than their philopatric counterparts whereas immigrant males recruited more offspring than those that remained in their natal location. In spite of the considerably higher immigration rates of females, our results indicate that, in absolute terms, their demographic and genetic impact in the receiving populations is lower than that in immigrant males. Immigrants often brought novel alleles into the studied populations and a high proportion of them were transmitted to their recruits, indicating that the genetic impact of immigrants is not ephemeral. Although only a few kilometres apart, the two study populations were genetically differentiated and showed strong divergence in different phenotypic and life‐history traits. An almost absent inter‐population dispersal, together with the fact that both populations receive immigrants from different source populations, is probably the main cause of the observed pattern of genetic differentiation. However, phenotypic differentiation (PST) for all the studied traits greatly exceeded neutral genetic differentiation (FST), indicating that divergent natural selection is the prevailing factor determining the evolutionary trajectory of these populations. Our study highlights the importance of integrating individual‐ and population‐based approaches to obtain a comprehensive view about the role of dispersal and natural selection on structuring the genotypic and phenotypic characteristics of natural populations.  相似文献   

13.
Identification of discrete and unique assemblages of individuals or populations is central to the management of exploited species. Advances in population genomics provide new opportunities for re‐evaluating existing conservation units but comparisons among approaches remain rare. We compare the utility of RAD‐seq, a single nucleotide polymorphism (SNP) array and a microsatellite panel to resolve spatial structuring under a scenario of possible trans‐Atlantic secondary contact in a threatened Atlantic Salmon, Salmo salar, population in southern Newfoundland. Bayesian clustering indentified two large groups subdividing the existing conservation unit and multivariate analyses indicated significant similarity in spatial structuring among the three data sets. mtDNA alleles diagnostic for European ancestry displayed increased frequency in southeastern Newfoundland and were correlated with spatial structure in all marker types. Evidence consistent with introgression among these two groups was present in both SNP data sets but not the microsatellite data. Asymmetry in the degree of introgression was also apparent in SNP data sets with evidence of gene flow towards the east or European type. This work highlights the utility of RAD‐seq based approaches for the resolution of complex spatial patterns, resolves a region of trans‐Atlantic secondary contact in Atlantic Salmon in Newfoundland and demonstrates the utility of multiple marker comparisons in identifying dynamics of introgression.  相似文献   

14.
Landscape features notoriously affect spatial patterns of biodiversity. For instance, in dendritic ecological networks (such as river basins), dendritic connectivity has been proposed to create unique spatial patterns of biodiversity. Here, we compared genetic datasets simulated under a lattice‐like, a dendritic and a circular landscape to test the influence of dendritic connectivity on neutral genetic diversity. The circular landscape had a level of connectivity similar to that of the dendritic landscape, so as to isolate the influence of dendricity on genetic diversity. We found that genetic diversity and differentiation varied strikingly among the three landscapes. For instance, the dendritic landscape generated higher total number of alleles and higher global Fst than the lattice‐like landscape, and these indices also varied between the dendritic and the circular landscapes, suggesting an effect of dendricity. Furthermore, in the dendritic landscape, allelic richness was higher in highly connected demes (e.g. confluences in rivers) than in low‐connected demes (e.g. upstream and downstream populations), which was not the case in the circular landscape, hence confirming the major role of dendricity. This led to bell‐shaped distributions of allelic richness along an upstream–downstream gradient. Conversely, genetic differentiation (Fst) was lower in highly than in low‐connected demes (which was not observed in circular landscape), and significant patterns of isolation by distance (IBD) were also observed in the dendritic landscape. We conclude that in dendritic networks, the combined influence of dendricity and connectivity generates unique spatial patterns of neutral genetic diversity, which has implications for population geneticists and conservationists.  相似文献   

15.
Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo‐Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.  相似文献   

16.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

17.
Glacial phases during the Pleistocene caused remarkable changes in species range distributions, with inevitable genetic consequences. Specifically, during interglacial phases, when the ice melted and new habitats became suitable again, species could recolonize regions that were previously covered by ice, such as high latitudes and elevations. Based on theoretical models and empirical data, a decrease in genetic variation is predicted along recolonization routes as a result of the consecutive founder effects that characterize the recolonization process. In the present study, we assessed the relative importance of historical and contemporary processes in shaping genetic diversity and differentiation of bank vole (Myodes glareolus) populations at different elevations in the Swiss Alps. By contrast to expectations, we found that genetic variation increased with elevation. Estimates of recent migration rates and a contrasting pattern of genetic differentiation observed at the mitochondrial cytochrome b gene and nuclear microsatellites support the hypothesis that higher genetic diversity at high elevation results from contemporary gene flow. Although historical recolonization processes can have marked effects on the genetic structure of populations, the present study provides an example where contemporary processes along an environmental gradient can reverse predicted patterns of genetic variation.  相似文献   

18.
Small populations may be expected to harbour less genetic variation than large populations, but the relation between census size (N), effective population size (N e), and genetic diversity is not well understood. We compared microsatellite variation in four small peripheral Atlantic salmon populations from the Iberian peninsula and three larger populations from Scotland to test whether genetic diversity was related to population size. We also examined the historical decline of one Iberian population over a 50-year period using archival scales in order to test whether a marked reduction in abundance was accompanied by a decrease in genetic diversity. Estimates of effective population size (N e) calculated by three temporal methods were consistently low in Iberian populations, ranging from 12 to 31 individuals per generation considering migration, and from 38 to 175 individuals per generation if they were regarded as closed populations. Corresponding N e/N ratios varied from 0.02 to 0.04 assuming migration (mean=0.03) and from 0.04 to 0.18 (mean=0.10) assuming closed populations. Population bottlenecks, inferred from the excess of heterozygosity in relation to allelic diversity, were detected in all four Iberian populations, particularly in those year classes derived from a smaller number of returning adults. However, despite their small size and declining status, Iberian populations continue to display relatively high levels of heterozygosity and allelic richness, similar to those found in larger Scottish populations. Furthermore, in the R. Asón no evidence was found for a historical loss of genetic diversity despite a marked decline in abundance during the last five decades. Thus, our results point to two familiar paradigms in salmonid conservation: (1)␣endangered populations can maintain relatively high levels of genetic variation despite their small size, and (2) marked population declines may not necessarily result in a significant loss of genetic diversity. Although there are several explanations for such results, microsatellite data and physical tagging suggest that high levels of dispersal and asymmetric gene flow have probably helped to maintain genetic diversity in these peripheral populations, and thus to avoid the negative consequences of inbreeding.  相似文献   

19.
20.
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号