首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication origin and both terminal segments were cloned from the large linear plasmid pSLA2-L in Streptomyces rochei 7434AN4. The basic replicon consists of a 1.9-kb DNA fragment, which contains the genetic information required for autonomous replication in circular form. Sequence analysis revealed two ORFs, RepL1 and RepL2, with no similarity to any of the replication initiator proteins in the database. Deletion and mutational analysis showed that RepL1 is essential for replication and RepL2 has a subsidiary function. The origin of replication may be located 800 bp upstream of repL1. Sequencing of the left and right terminal segments revealed the presence of 12 palindromes. The sequence of the first 90 bp, including palindromes I–IV, shows great similarity to that of other Streptomyces linear chromosomes and plasmids. These results suggest that the internal replication origins of the linear replicons vary widely, in contrast to the high degree of conservation of their telomeres. Received: 2 December 1999 / Accepted: 12 April 2000  相似文献   

2.
Replication at the telomeres of the Streptomyces linear plasmid pSLA2   总被引:13,自引:6,他引:7  
The Streptomyces linear plasmid pSLA2 initiates DNA replication bidirectionally towards its telomeres from a site located near the centre of the molecule; at the telomeres, the recessed ends of lagging strands are filled in by non-displacing DNA synthesis. Here, we report experiments that test three proposed mechanisms for lagging-strand fill-in. We present data inconsistent with recombinational or terminal hairpin models for the formation of full-length duplex pSLA2 DNA. Instead, we find that deletions in short, distantly separated homologous palindromes in the leading-strand 3' overhang prevent propagation of linear pSLA2 DNA, implicating a mechanism of palindrome-mediated leading-strand fold-back in telomere replication. We further show that circularized pSLA2 DNA molecules are opened in vivo precisely at the terminal nucleotides of telomeres, generating functional linear replicons containing native telomeres covalently bound to a protein at their 5' DNA termini. Together, our results support a model in which pairing of multiple widely separated pSLA2 palindromes anchors the 3' end of the leading-strand overhang to a site near the overhang's base — providing a recognition site for terminal-protein-primed DNA synthesis and subsequent endonucleolytic processing. Thus, the replication of Streptomyces plasmid telomeres may have features in common with the mechanism proposed for telomere replication in autonomous parvoviruses.  相似文献   

3.
The terminal structure of a linear plasmid pSLA2 , which was isolated from Streptomyces rochei , was analysed. The 5' ends of pSLA2 DNA were blocked by the association of a protein probably covalently bonded with the DNA. This block is removed by alkali treatment and blunt ends with 5'-phosphate and 3'-hydroxy termini were released. The two terminal fragments of pSLA2 were cloned and the nucleotide sequence was determined. An inverted terminal repetition of 614 bp was found along with the presence of further interrupted homologous sequences beyond this area up to 800 bp. These are the first inverted terminal repeat sequences found in microbial linear plasmids.  相似文献   

4.
Streptomyces sp. linear plasmids and linear chromosomes usually contain conserved terminal palindromic sequences bound by the conserved telomeric proteins Tap and Tp, encoded by the tap and tpg genes, respectively, as well as plasmid loci required for DNA replication in circular mode when the telomeres are deleted. These consist of iterons and an adjacent rep gene. By using PCR, we found that 8 of 17 newly detected linear plasmids in Streptomyces strains lack typical telomeric tap and tpg sequences. Instead, two novel telomeres in plasmids pRL1 and pRL2 from the eight strains and one conserved telomere in pFRL1 from the other strains were identified, while multiple short palindromes were also found in the plasmids. The complete nucleotide sequence of pRL2 revealed a gene encoding a protein containing two domains, resembling Tap of Streptomyces and a helicase of Thiobacillus, and an adjacent gene encoding a protein similar to Tpg of Streptomyces and a portion of the telomere terminal protein pTP of adenoviruses. No typical iterons-rep loci were found in the three plasmids. These results indicate an unexpected diversity of telomere palindromic sequences and replication genes among Streptomyces linear plasmids.  相似文献   

5.
The complete nucleotide sequence of the large linear plasmid pSLA2-L in Streptomyces rochei strain 7434AN4 has been determined. pSLA2-L was found to be 210 614 bp long with a GC content of 72.8% and carries 143 open reading frames. It is especially noteworthy that three-quarters of the pSLA2-L DNA is occupied by secondary metabolism-related genes, namely two type I polyketide synthase (PKS) gene clusters for lankacidin and lankamycin, a mithramycin synthase-like type II PKS gene cluster, a carotenoid biosynthetic gene cluster and many regulatory genes. In particular, the lankacidin PKS is unique, because it may be a mixture of modular- and iterative-type PKSs and carries a fusion protein of non-ribosomal peptide synthetase and PKS. It is also interesting that all the homologues of the afsA, arpA, adpA and strR genes in the A-factor regulatory cascade in Streptomyces griseus were found on pSLA2-L, and disruption of the afsA homologue caused non-production of both lankacidin and lankamycin. These results, together with the finding of three possible replication origins at 50-63 kb from the right end, suggest that the present form of pSLA2-L might have been generated by a series of insertions of the biosynthetic gene clusters into the left side of the original plasmid.  相似文献   

6.
The SLP2 plasmid had previously been demonstrated genetically to exist In Streptomyces lividans by its ability to promote conjugation and to elicit‘pocks’on recipient (SLP2?) cultures, but it had not been physically detected. Using pulsed-field gel electrophoresis, a 50kb linear DNA was isolated from SLP2+ but not SLP2? strains of S. lividans, and from Streptomyces coelicolor and Streptomyces parvulus strains to which SLP2 had been transferred by conjugation or transformation. We conclude that this linear DNA is SLP2. The terminal fragments of SLP2 were cloned. The determined sequences revealed a 44 bp imperfect terminal inverted repeat. The terminal 12 bp sequence of SLP2 was identical to those of two other Streptomyces linear plasmids, pSLA2 and pSCL, and similar to the terminal sequences of another Streptomyces linear plasmid, SCP1. The termini of SLP2 DNA were resistant to digestion by λ exonuclease and ExoIII. A truncated (probably crippled) copy of Tn4811 is present on the plasmid. While the SLP2 plasmid exists as a tree form in the host, a 15.7 kb sequence corresponding to the segment of SLP2 from Tn4811 to the right terminus is also present (at a copy number similar to the free form) elsewhere in the genome of S. lividans. Furthermore, SLP2 is partially homologous to a newly discovered 650 kb linear plasmid in S. parvulus.  相似文献   

7.
The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.  相似文献   

8.
Suwa M  Sugino H  Sasaoka A  Mori E  Fujii S  Shinkawa H  Nimi O  Kinashi H 《Gene》2000,246(1-2):123-131
The 200kb linear plasmid pSLA2-L was suggested to be involved in the production of two macrolide antibiotics, lankamycin (Lm) and lankacidin (Lc), in Streptomyces rochei 7434AN4. Hybridization experiments with the polyketide synthase (PKS) genes for erythromycin and actinorhodin identified two eryAI-homologous regions and an actI-homologous region on pSLA2-L. The nucleotide sequence of a 3.6kb SacI fragment carrying one of the eryAI-homologs revealed that it codes for part of a large protein with four domains for ketoreductase, acyl carrier protein, ketosynthase, and acyltransferase. Gene disruption confirmed that the two eryAI-homologs are parts of a large type-I PKS gene cluster for Lm. A 4.8kb DNA carrying the actI-homologous region contains four open reading frames (ORF1-ORF4) as well as an additional ORF, i.e. ORF5, which might code for a thioesterase. Deletion of the ORF2-ORF4 region showed that it is not involved in the synthesis of Lm or Lc. Thus, it was confirmed that pSLA2-L contains two PKS gene clusters for Lm and an unknown type-II polyketide.  相似文献   

9.
We extensively analyzed the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two structurally unrelated polyketide antibiotics, lankacidin and lankamycin. It was found that amine oxidase LkcE oxidizes an acyclic amine to an imine, which is in turn converted to the 17-membered carbocyclic lankacidin. Heterologous expression and translational fusion experiments indicated the modular-iterative mixed polyketide biosynthesis of lankacidin. Concerning to lankamycin biosynthesis, starter unit biosynthesis and the post-PKS modification pathway were elucidated by feeding and gene inactivation experiments. It was shown that pSLA2-L contains many regulatory genes, which constitute the signaling molecule/receptor system for antibiotic production and morphological differentiation in this strain. Two signaling molecules, SRB1 and SRB2, that induce production of lankacidin and lankamycin were further isolated and their structures were elucidated. Each contains a 2,3-disubstituted butenolide skeleton, and the stereochemistry at C-1′ position is crucial for inducing activity.  相似文献   

10.
Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. InSaccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid) which carried the host telomeric repeats TG1–3 of 300–350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat), suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1–3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids. Published: February 17, 2003  相似文献   

11.
Linear DNA plasmids, designated pSLA1 and pSLA2, which were isolated from two strains of Streptomyces sp. producing lankacidin group antibiotics, were analyzed by using restriction endonucleases. Cleavage patterns of these plasmids were very similar, indicating that they are closely related. Cleavage maps of pSLA2 were constructed with BamHI, SalI, BglII, and EcoRI. A protein was associated with the restriction fragments of both ends of pSLA2 and this was not removed by sodium dodecyl sulfate-phenol treatment. pSLA2 was senstive to a 3′-exonuclease, exonuclease III, but was resistant to the 5′-exonuclease, λ-exonuclease. These results suggest that the protein is associated with the 5′ termini of pSLA2. The same terminal structure was also found on pSLA1. The approximate copy number of the plasmid was estimated by a brief method using agarose gel electrophoresis.  相似文献   

12.
Streptomyces sp. linear plasmids and linear chromosomes usually contain conserved terminal palindromic sequences bound by the conserved telomeric proteins Tap and Tp, encoded by the tap and tpg genes, respectively, as well as plasmid loci required for DNA replication in circular mode when the telomeres are deleted. These consist of iterons and an adjacent rep gene. By using PCR, we found that 8 of 17 newly detected linear plasmids in Streptomyces strains lack typical telomeric tap and tpg sequences. Instead, two novel telomeres in plasmids pRL1 and pRL2 from the eight strains and one conserved telomere in pFRL1 from the other strains were identified, while multiple short palindromes were also found in the plasmids. The complete nucleotide sequence of pRL2 revealed a gene encoding a protein containing two domains, resembling Tap of Streptomyces and a helicase of Thiobacillus, and an adjacent gene encoding a protein similar to Tpg of Streptomyces and a portion of the telomere terminal protein pTP of adenoviruses. No typical iterons-rep loci were found in the three plasmids. These results indicate an unexpected diversity of telomere palindromic sequences and replication genes among Streptomyces linear plasmids.  相似文献   

13.
Borrelia burgdorferi, the Lyme disease agent, has double-stranded linear plasmids with covalently closed ends. DNA at the ends, or telomeres, of two linear plasmids of B. burgdorferi strain B31 was examined. Telomeric sequences from both ends of a 16 kb linear plasmid and from one end of a 49 kb linear plasmid were cloned and sequenced. An 18 bp AT-rich inverted repeat was found at each end of the 16 kb linear plasmid. The sequences of the two ends of this plasmid were different beyond these short inverted terminal repeats. The cloned end of the 49 kb linear plasmid had sequence identity with one end of the 16 kb linear plasmid. The end sequence common to both plasmids contained a series of phased, short direct repeats and a 52 bp palindrome adjacent to a highly AT-rich region. These findings indicate that Borrelia linear plasmid telomeres have structural features different from those of other known replicons.  相似文献   

14.
Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.  相似文献   

15.
Thirty-two 2-deoxygalactose-resistant mutants with DNA amplifications were isolated from Streptomyces lividans 66 strains carrying plasmid pMT664, which carries an agarase gene (dagA) and IS466. Thirty-one of the mutants carried amplified DNA sequences from a 70 kb region about 300 kb from one end of the linear chromosome in this species. In 28 of the mutants, all the wild-type sequences between the amplified region and the start of the 30 kb inverted repeat that forms the chromosome end were deleted. Thus, there appeared to be loss of one chromosome end and its replacement by the DNA amplification. In some mutants there amplification of a previously characterised 5.7 kb sequence that lies about 600 kb from the other chromosome end was also noted.  相似文献   

16.
The chromosomal DNA of Streptomyces lividans 66 is linear   总被引:20,自引:8,他引:12  
Two copies of a DNA sequence similar or identical to one end of the linear plasmid SLP2 were found on the Streptomyces lividans chromosome. Restriction mapping showed that these sequences represented free ends. Electrophoretic retardation and glass-binding studies indicated that the telomeres carry covalently bound proteins. Moreover, the chromosome migrated as an 8Mb linear DNA in pulsed-field gel electrophoresis. A similar finding with the chromosomes of six other Streptomyces species suggested that a linear chromosome may be characteristic of the genus. The S. lividans chromosome can be circularized by joining the two ends by artificial targeted recombination or by spontaneous deletions spanning both telomeres. Thus the chromosome appears to be able to exist, in viable bacteria, as a linear or a circular molecule.  相似文献   

17.
18.
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wildtype strain of D. melanogaster, including a minisatellite with a 457 bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.  相似文献   

19.
High-resolution fluorescence in situ hybridization (FISH) on interphase and pachytene nuclei, and extended DNA fibers enabled microscopic distinction of DNA sequences less than a few thousands of base pairs apart. We applied this technique to reveal the molecular organization of telomere ends in japonica rice (Oryza sativa ssp. japonica), which consist of the Arabidopsis type TTTAGGG heptameric repeats and the rice specific subtelomeric tandem repeat sequence A (TrsA). Southern hybridizations of DNA digested with Bal31 and EcoRI, and FISH on chromosomes and extended DNA fibers demonstrated that (1) all chromosome ends possess the telomere tandem repeat measuring 3–4 kb; (2) the subtelomeric TrsA occurs only at the ends of the long arms of chromosomes 6 and 12, and measure 6 and 10 kb, which corresponds to 231 and 682 copies for these sites, respectively; (3) the telomere and TrsA repeats are separated by at most a few thousands of intervening nucleotide sequences. The molecular organization for a general telomere organization in plant chromosomes is discussed.  相似文献   

20.
Three recently isolated wild-type strains of the ascomycete Podospora anserina were analyzed for the presence of linear mitochondrial plasmids. In one of these strains, designated Wa6, at least 12 distinct plasmid-like elements were identified. From molecular analyses a minimum number of 78 individual linear molecules with proteins bound to their 5 ends was estimated. In addition, the different members of this family of typical linear plasmids were shown to possess a common central region and terminal sequences which differ from one plasmid to another due to the presence of different numbers of a 2.4 kb sequence module. Finally, the pWa6 plasmids share a high degree of sequence similarity with pAL2-1, a linear plasmid previously identified in mitochondria of a long-lived mutant of P.anserina. A mechanism is proposed which explains the generation of these distinct, closely related extrachromosomal genetic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号