首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli the Min system prevents Z ring assembly at cell poles by topologically regulating the division inhibitor MinC. The MinC protein has two domains of equal size and both domains can target FtsZ and block cell division in the proper context. Recently, we have shown that, along with MinD, the C‐terminal domain of MinC (MinCC) competes with FtsA, and to a lesser extent with ZipA, for interaction with the C‐terminal tail of FtsZ to block division. Here we explored the interaction between the N‐terminal domain of MinC (MinCN) and FtsZ. A search for mutations in ftsZ that confer resistance to MinCN identified an α‐helix at the interface of FtsZ subunits as being critical for the activity of MinCN. Focusing on one such mutant FtsZ–N280D, we showed that it greatly reduced the FtsZ–MinC interaction and was resistant to MinCN both in vivo and in vitro. With these results, an updated model for the action of MinC on FtsZ is proposed: MinC interacts with FtsZ to disrupt two interactions, FtsZ–FtsA/ZipA and FtsZ–FtsZ, both of which are essential for Z ring formation.  相似文献   

2.
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.  相似文献   

3.
A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0) pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.  相似文献   

4.
In most bacteria, the tubulin‐like GTPase FtsZ forms an annulus at midcell (the Z‐ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z‐ring assembly and early FtsZ‐directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C‐terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane‐anchored FtsZ in the regulation of cell wall hydrolysis.  相似文献   

5.
ZipA is an essential cell division protein in Escherichia coli that is recruited to the division site early in the division cycle. As it is anchored to the membrane and interacts with FtsZ, it is a candidate for tethering FtsZ filaments to the membrane during the formation of the Z ring. In this study, we have investigated the requirements for ZipA localization to the division site. ZipA requires FtsZ, but not FtsA or FtsI, to be localized, indicating that it is recruited by FtsZ. Consistent with this, apparently normal Z rings are formed in the absence of ZipA. The interaction between FtsZ and ZipA occurs through their carboxy-terminal domains. Although a MalE-ZipA fusion binds to FtsZ filaments, it does not affect the GTPase activity or dynamics of the filaments. These results are consistent with ZipA acting after Z ring formation, possibly to link the membrane to FtsZ filaments during invagination of the septum.  相似文献   

6.
FtsZ, a bacterial homolog of eukaryotic tubulin, assembles into the Z ring required for cytokinesis. In Escherichia coli, FtsZ interacts directly with FtsA and ZipA, which tether the Z ring to the membrane. We used three-dimensional structured illumination microscopy to compare the localization patterns of FtsZ, FtsA, and ZipA at high resolution in Escherichia coli cells. We found that FtsZ localizes in patches within a ring structure, similar to the pattern observed in other species, and discovered that FtsA and ZipA mostly colocalize in similar patches. Finally, we observed similar punctate and short polymeric structures of FtsZ distributed throughout the cell after Z rings were disassembled, either as a consequence of normal cytokinesis or upon induction of an endogenous cell division inhibitor.  相似文献   

7.
The tubulin homologue FtsZ provides the cytoskeletal framework and constriction force for bacterial cell division. FtsZ has an ~ 50‐amino‐acid (aa) linker between the protofilament‐forming globular domain and the C‐terminal (Ct) peptide that binds FtsA and ZipA, tethering FtsZ to the membrane. This Ct‐linker is widely divergent across bacterial species and thought to be an intrinsically disordered peptide (IDP). We confirmed that the Ct‐linkers from three bacterial species behaved as IDPs in vitro by circular dichroism and trypsin proteolysis. We made chimeras, swapping the Escherichia coli linker for Ct‐linkers from other bacteria, and even for an unrelated IDP from human α‐adducin. Most substitutions allowed for normal cell division, suggesting that sequence of the IDP did not matter. With few exceptions, almost any sequence appears to work. Length, however, was important: IDPs shorter than 43 or longer than 95 aa had compromised or no function. We conclude that the Ct‐linker functions as a flexible tether between the globular domain of FtsZ in the protofilament, and its attachment to FtsA/ZipA at the membrane. Modelling the Ct‐linker as a worm‐like chain, we predict that it functions as a stiff entropic spring linking the bending protofilaments to the membrane.  相似文献   

8.
Assembly of the Z-ring over unsegregated nucleoids is prevented by a process called nucleoid occlusion (NO), which in Escherichia coli is partially mediated by SlmA. SlmA is a Z ring antagonist that is spatially regulated and activated by binding to specific DNA sequences (SlmA binding sites, SBSs) more abundant in the origin proximal region of the chromosome. However, the mechanism by which SBS bound SlmA (activated form) antagonizes Z ring assembly is controversial. Here, we report the isolation and characterization of two FtsZ mutants, FtsZ-K190V and FtsZ-D86N that confer resistance to activated SlmA. In trying to understand the basis of resistance of these mutants, we confirmed that activated SlmA antagonizes FtsZ polymerization and determined these mutants were resistant, even though they still bind SlmA. Investigation of SlmA binding to FtsZ revealed activated SlmA binds to the conserved C-terminal tail of FtsZ and that the ability of activated SlmA to antagonize FtsZ assembly required the presence of the tail. Together, these results lead to a model in which SlmA binding to an SBS is activated to bind the tail of FtsZ resulting in further interaction with FtsZ leading to depolymerization of FtsZ polymers. This model is strikingly similar to the model for the inhibitory mechanism of the spatial inhibitor MinCD.  相似文献   

9.
FtsZ and ZipA are essential components of the septal ring apparatus, which mediates cell division in Escherichia coli. FtsZ is a cytoplasmic tubulin-like GTPase that forms protofilament-like homopolymers in vitro. In the cell, the protein assembles into a ring structure at the prospective division site early in the division cycle, and this marks the first recognized event in the assembly of the septal ring. ZipA is an inner membrane protein which is recruited to the nascent septal ring at a very early stage through a direct interaction with FtsZ. Using affinity blotting and protein localization techniques, we have determined which domain on each protein is both sufficient and required for the interaction between the two proteins in vitro as well as in vivo. The results show that ZipA binds to residues confined to the 20 C-terminal amino acids of FtsZ. The FtsZ binding (FZB) domain of ZipA is significantly larger and encompasses the C-terminal 143 residues of ZipA. Significantly, we find that the FZB domain of ZipA is also required and sufficient to induce dramatic bundling of FtsZ protofilaments in vitro. Consistent with the notion that the ability to bind and bundle FtsZ polymers is essential to the function of ZipA, we find that ZipA derivatives lacking an intact FZB domain fail to support cell division in cells depleted for the native protein. Interestingly, ZipA derivatives which do contain an intact FZB domain but which lack the N-terminal membrane anchor or in which this anchor is replaced with the heterologous anchor of the DjlA protein also fail to rescue ZipA(-) cells. Thus, in addition to the C-terminal FZB domain, the N-terminal domain of ZipA is required for ZipA function. Furthermore, the essential properties of the N domain may be more specific than merely acting as a membrane anchor.  相似文献   

10.
The earliest step in Escherichia coli cell division consists of the assembly of FtsZ protein into a proto‐ring structure, tethered to the cytoplasmic membrane by FtsA and ZipA. The proto‐ring then recruits additional cell division proteins to form the divisome. Previously we described an ftsZ allele, ftsZL169R, which maps to the side of the FtsZ subunit and confers resistance to FtsZ assembly inhibitory factors including Kil of bacteriophage λ. Here we further characterize this allele and its mechanism of resistance. We found that FtsZL169R permits the bypass of the normally essential ZipA, a property previously observed for FtsA gain‐of‐function mutants such as FtsA* or increased levels of the FtsA‐interacting protein FtsN. Similar to FtsA*, FtsZL169R also can partially suppress thermosensitive mutants of ftsQ or ftsK, which encode additional divisome proteins, and confers strong resistance to excess levels of FtsA, which normally inhibit FtsZ ring function. Additional genetic and biochemical assays provide further evidence that FtsZL169R enhances FtsZ protofilament bundling, thereby conferring resistance to assembly inhibitors and bypassing the normal requirement for ZipA. This work highlights the importance of FtsZ protofilament bundling during cell division and its likely role in regulating additional divisome activities.  相似文献   

11.
FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.  相似文献   

12.
A fluorescence polarization competition assay has been developed to screen for inhibitors of the Escherichia coli FtsZ/ZipA protein-protein interaction. A previously published X-ray costructure demonstrated that a 17-amino-acid peptide, corresponding to FtsZ C-terminal residues 367-383 (FtsZ(367-383)), interacts with the C-terminal FtsZ binding domain of ZipA (ZipA(185-328)). Phage display was employed to identify a unique but related peptide which when further modified and labeled was shown to have a higher affinity to ZipA(185-328) than the FtsZ(367-383) peptide and binds to the same site. This peptide had a six fold increase in fluorescence polarization upon binding to ZipA(185-328) compared to a two fold increase for the FtsZ(367-383) fluorophore. As a result, assay parameters using the phage display peptide were further optimized and adapted for the high-throughput screen. A high-throughput screen of 250,000 compounds identified 29 hits with inhibition equal to or greater than 30% at 50 microg/ml. An X-ray costructure of a promising small molecule in this library complexed with ZipA(185-328) (KI=12 microM) revealed that the compound binds to the same hydrophobic pocket as the FtsZ(367-383) peptide.  相似文献   

13.
Bacterial cell division is driven by an FtsZ ring in which the FtsZ protein localizes at mid-cell and recruits other proteins, forming a divisome. In Escherichia coli, the first molecular assembly of the divisome, the proto-ring, is formed by the association of FtsZ polymers to the cytoplasmic membrane through the membrane-tethering FtsA and ZipA proteins. The MinCDE system plays a major role in the site selection of the division ring because these proteins oscillate from pole to pole in such a way that the concentration of the FtsZ-ring inhibitor, MinC, is minimal at the cell center, thus favoring FtsZ assembly in this region. We show that MinCDE drives the formation of waves of FtsZ polymers associated to bilayers by ZipA, which propagate as antiphase patterns with respect to those of Min as revealed by confocal fluorescence microscopy. The emergence of these FtsZ waves results from the displacement of FtsZ polymers from the vicinity of the membrane by MinCD, which efficiently competes with ZipA for the C-terminal region of FtsZ, a central hub for multiple interactions that are essential for division. The coupling between FtsZ polymers and Min is enhanced at higher surface densities of ZipA or in the presence of crowding agents that favor the accumulation of FtsZ polymers near the membrane. The association of FtsZ polymers to the membrane modifies the response of FtsZ to Min, and comigrating Min-FtsZ waves are observed when FtsZ is free in solution and not attached to the membrane by ZipA. Taken together, our findings show that the dynamic Min patterns modulate the spatial distribution of FtsZ polymers in controlled minimal membranes. We propose that ZipA plays an important role in mid-cell recruitment of FtsZ orchestrated by MinCDE.  相似文献   

14.
【目的】探索大肠埃希氏菌(Escherichia coli,E.coli)FtsZ(236-245)结构域两性螺旋特性对FtsZ组装和FtsZ-FtsA相互作用的影响。【方法】利用分子克隆和定点突变技术,构建FtsZ及其突变体表达载体,亲和纯化获得相应目标蛋白;通过同源重组和Pl转导构建QN23-QN29菌株;利用活细胞成像观察FtsZ及其突变体的胞内定位特点;膜蛋白分离和Western blot分析FtsZ突变体的膜结合特性变化;非变性胶分离和体外聚合分析检测定点突变对FtsZ单体组装特性的影响;免疫沉淀和Far Western blot实验检测FtsZ/FtsZ~*-FtsA间的相互作用。【结果】FtsZ~(E234A/K)和FtsZ~(E241A/K)突变体的功能活性降低、备突变体在E.coli内不能正确定位和形成功能性Z环;E237A/K和E241A/K位点突变致备突变体聚合能力降低、FtsZ*-FtsA的相互作用减弱和FtsZ的膜结合特性变化。【结论】E237和E241是影响FtsZ(236-245)区域两性螺旋特性和FtsZ组装及FtsZ-FtsA相互作用的重要氨基酸。  相似文献   

15.
The recruitment of ZipA to the septum by FtsZ is an early, essential step in cell division in Escherichia coli. We have used polymerase chain reaction-mediated random mutagenesis in the yeast two-hybrid system to analyze this interaction and have identified residues within a highly conserved sequence at the C terminus of FtsZ as the ZipA binding site. A search for suppressors of a mutation that causes a loss of interaction (ftsZ(D373G)) identified eight different changes at two residues within this sequence. In vitro, wild type FtsZ interacted with ZipA with a high affinity in an enzyme-linked immunosorbent assay, whereas FtsZ(D373G) failed to interact. Two mutant proteins examined restored this interaction significantly. In vivo, the alleles tested are significantly more toxic than the wild type ftsZ and cannot complement a deletion. We have shown that a fusion, which encodes the last 70 residues of FtsZ in the two-hybrid system, is sufficient for the interaction with FtsA and ZipA. However, when the wild type sequence is compared with one that encodes FtsZ(D373G), no interaction was seen with either protein. Mutations surrounding Asp-373 differentially affected the interactions of FtsZ with ZipA and FtsA, indicating that these proteins bind the C terminus of FtsZ differently.  相似文献   

16.
ZipA is a membrane anchored protein in Escherichia coli that interacts with FtsZ, a homolog of eukaryotic tubulins, forming a septal ring structure that mediates bacterial cell division. Thus, the ZipA/FtsZ protein-protein interaction is a potential target for an antibacterial agent. We report here an NMR-based fragment screening approach which identified several hits that bind to the C-terminal region of ZipA. The screen was performed by 1H-15N HSQC experiments on a library of 825 fragments that are small, lead-like, and highly soluble. Seven hits were identified, and the binding mode of the best one was revealed in the X-ray crystal structure. Similar to the ZipA/FtsZ contacts, the driving force in the binding of the small molecule ligands to ZipA is achieved through hydrophobic interactions. Analogs of this hit were also evaluated by NMR and X-ray crystal structures of these analogs with ZipA were obtained, providing structural information to help guide the medicinal chemistry efforts.  相似文献   

17.
The assembly of the Z ring is the earliest step in bacterial cell division. In Escherichia coli this assembly requires either FtsA or ZipA which bind to a conserved, C-terminal 17 amino acid motif in FtsZ and to the membrane. The FtsZ-ZipA interaction is well characterized; however, nothing is known about the region of FtsA involved in the interaction with FtsZ even though the FtsA-FtsZ interaction is nearly ubiquitous in Eubacteria. FtsA is proposed to bind to the membrane through its conserved C-terminal amphiphatic helix before efficiently interacting with FtsZ. Based upon this model we designed a genetic screen to identify mutants specifically impaired for the FtsA-FtsZ interaction. The mutants obtained retain the ability to be targeted to the membrane but fail to be recruited to the Z ring or interact with FtsZ in the yeast two-hybrid system. These mutants do not complement an ftsA-depletion strain. Through this approach we have identified a region of FtsA containing some invariant residues which is required for binding to FtsZ. The results support our model that FtsA is targeted to the membrane before it interacts with FtsZ and demonstrates that this interaction plays an essential role in E. coli cell division.  相似文献   

18.
The Escherichia coli Min system contributes to spatial regulation of cytokinesis by preventing assembly of the Z ring away from midcell. MinC is a cell division inhibitor whose activity is spatially regulated by MinD and MinE. MinC has two functional domains of similar size, both of which have division inhibitory activity in the proper context. However, the molecular mechanism of the inhibitory action of either domain is not very clear. Here, we report that the septal localization and division inhibitory activity of MinCC/MinD requires the conserved C-terminal tail of FtsZ. This tail also mediates interaction with two essential division proteins, ZipA and FtsA, to link FtsZ polymers to the membrane. Overproduction of MinCC/MinD displaces FtsA from the Z ring and eventually disrupts the Z ring, probably because it also displaces ZipA. These results support a model for the division inhibitory action of MinC/MinD. MinC/MinD binds to ZipA and FtsA decorated FtsZ polymers located at the membrane through the MinCC/MinD–FtsZ interaction. This binding displaces FtsA and/or ZipA, and more importantly, positions MinCN near the FtsZ polymers making it a more effective inhibitor.  相似文献   

19.
The full-length ZipA protein from Escherichia coli, one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein, has been incorporated in single copy into nanodiscs formed by a membrane scaffold protein encircling an E. coli phospholipid mixture. This is an acellular system that reproduces the assembly of part of the cell division components. ZipA contained in nanodiscs (Nd-ZipA) retains the ability to interact with FtsZ oligomers and with FtsZ polymers. Interactions with FtsZ occur at similar strengths as those involved in the binding of the soluble form of ZipA, lacking the transmembrane region, suggesting that the transmembrane region of ZipA has little influence on the formation of the ZipA·FtsZ complex. Peptides containing partial sequences of the C terminus of FtsZ compete with FtsZ polymers for binding to Nd-ZipA. The affinity of Nd-ZipA for the FtsZ polymer formed with GTP or GMPCPP (a slowly hydrolyzable analog of GTP) is moderate (micromolar range) and of similar magnitude as for FtsZ-GDP oligomers. Polymerization does not stabilize the binding of FtsZ to ZipA. This supports the role of ZipA as a passive anchoring device for the proto-ring with little implication, if any, in the regulation of its assembly. Furthermore, it indicates that the tethering of FtsZ to the membrane shows sufficient plasticity to allow for its release from noncentral regions of the cytoplasmic membrane and its subsequent relocation to midcell when demanded by the assembly of a division ring.  相似文献   

20.
Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号