首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular marker systems in insects: current trends and future avenues   总被引:5,自引:0,他引:5  
Behura SK 《Molecular ecology》2006,15(11):3087-3113
Insects comprise the largest species composition in the entire animal kingdom and possess a vast undiscovered genetic diversity and gene pool that can be better explored using molecular marker techniques. Current trends of application of DNA marker techniques in diverse domains of insect ecological studies show that mitochondrial DNA (mtDNA), microsatellites, random amplified polymorphic DNA (RAPD), expressed sequence tags (EST) and amplified fragment length polymorphism (AFLP) markers have contributed significantly for progresses towards understanding genetic basis of insect diversity and for mapping medically and agriculturally important genes and quantitative trait loci in insect pests. Apart from these popular marker systems, other novel approaches including transposon display, sequence-specific amplification polymorphism (S-SAP), repeat-associated polymerase chain reaction (PCR) markers have been identified as alternate marker systems in insect studies. Besides, whole genome microarray and single nucleotide polymorphism (SNP) assays are becoming more popular to screen genome-wide polymorphisms in fast and cost effective manner. However, use of such methodologies has not gained widespread popularity in entomological studies. The current study highlights the recent trends of applications of molecular markers in insect studies and explores the technological advancements in molecular marker tools and modern high throughput genotyping methodologies that may be applied in entomological researches for better understanding of insect ecology at molecular level.  相似文献   

2.
The interactions between herbivores and their host plants play a key role in ecological processes. Understanding the width and nature of these interactions is fundamental to ecology and conservation. Recent research on DNA‐based inference of trophic associations suggests that the host range of phytophagous insects in the tropics may be wider than previously thought based on traditional observation. However, the reliability of molecular inference of ecological associations, still strongly dependent on PCR and thus exposed to the risk of contamination with environmental DNA, is under debate. Here, we explored alternative procedures to reduce the chance of amplification of external, nondiet DNA, including surface decontamination and analysis of mid/hind guts, comparing the results with those obtained using the standard protocol. We studied 261 specimens in eight species of Neotropical Chrysomelidae that yielded 316 psbA‐trnH intergenic spacer sequences (cpDNA marker of putative diets) from unique and multiple‐band PCR results. The taxonomic identity of these sequences was inferred using the automated pipeline BAGpipe, yielding results consistent with 31 plant families. Regardless of the protocol used, a wide taxonomic spectrum of food was inferred for all chrysomelid species. Canonical Correspondence Analysis using these data revealed significant differences attributed mainly to species (expectedly, since they represent different ecologies), but also to treatment (untreated vs. cleaned/gut samples) and PCR results (single vs. multiple bands). Molecular identification of diets is not straightforward and, regardless of the species’ niche breadth, combining approaches that reduce external contamination and studying multiple individuals per species may help increasing confidence in results.  相似文献   

3.
North African ungulates include several threatened and emblematic species, yet are poorly studied mainly due to their remoteness and elusiveness. Noninvasive sampling provides a useful approach to obtain ecological and genetic information essential to guide conservation actions. The very first and most important step in conservation planning is to accurately identify species, and molecular genetics has been proved to be a useful tool. Several molecular genetics protocols are available for species identification, even for samples with poor quality DNA, such as faeces, hairs or bones. Most of these protocols use mitochondrial DNA for barcoding despite this marker being especially prone to problems, including mtDNA introgression, nuclear insert copies, high intraspecific diversity or heteroplasmy. In this work, we developed a molecular method based on polymorphisms in small fragments of the mitochondrial cytochrome b (cytb, mtDNA) and the nuclear kappa casein genes (KCAS, nDNA) for identifying endangered North African ungulates. These fragments revealed polymorphisms, including species‐specific variation, which allowed species identification of nine ungulate species that co‐occur in North Africa. The method was validated across more than 400 samples, including different types of noninvasive samples collected in the field. The simplicity, high reliability and relative low cost of the described method make it a promising tool to improve ecological studies of the North African ungulates and consequently, the implementation of more efficient management and conservation plans for these endangered ungulates.  相似文献   

4.
Age is a fundamental aspect of animal ecology, but is difficult to determine in many species. Humpback whales exemplify this as they have a lifespan comparable to humans, mature sexually as early as 4 years and have no reliable visual age indicators after their first year. Current methods for estimating humpback age cannot be applied to all individuals and populations. Assays for human age have recently been developed based on age‐induced changes in DNA methylation of specific genes. We used information on age‐associated DNA methylation in human and mouse genes to identify homologous gene regions in humpbacks. Humpback skin samples were obtained from individuals with a known year of birth and employed to calibrate relationships between cytosine methylation and age. Seven of 37 cytosines assayed for methylation level in humpback skin had significant age‐related profiles. The three most age‐informative cytosine markers were selected for a humpback epigenetic age assay. The assay has an R2 of 0.787 (P = 3.04e?16) and predicts age from skin samples with a standard deviation of 2.991 years. The epigenetic method correctly determined which of parent–offspring pairs is the parent in more than 93% of cases. To demonstrate the potential of this technique, we constructed the first modern age profile of humpback whales off eastern Australia and compared the results to population structure 5 decades earlier. This is the first epigenetic age estimation method for a wild animal species and the approach we took for developing it can be applied to many other nonmodel organisms.  相似文献   

5.
Kelp forest ecosystems dominate 150,000 km of global temperate coastline, rivalling the coastal occurrence of coral reefs. Despite the astounding biological diversity and productive ecological communities associated with kelp forests, patterns of species richness and composition are difficult to monitor and compare. Crustose coralline algae are a critically important substrate for propagule settlement for a range of kelp forest species. Coralline‐covered cobbles are home to hundreds of species of benthic animals and algae and form a replicable unit for ecological assays. Here, we use DNA metabarcoding of bulk DNA extracts sampled from cobbles to explore patterns of species diversity in kelp forests of the central California coast. The data from 97 cobbles within kelp forest ecosystems at three sites in Central California show the presence of 752 molecular operational taxonomic units (MOTUs) and 53 MOTUs assigned up to the species level with >95% similarity to current databases. We are able to detect spatial patterns of important management targets such as abalone recruits, and localized abundance of sea stars in 2012. Comparison of classic ecological surveys of these sites reveals large differences in species targets for these two approaches. In order to make such comparisons more quantitative, we use Presence/Absence Metabarcoding, using the fraction of replicate cobbles showing a species as a measure of its local abundance. This approach provides a fast and repeatable survey method that can be applied for biodiversity assessments across systems to shed light on the impact of different ecological disturbances and the role played by marine protected areas.  相似文献   

6.
Biological invasions may cause serious damage to the native environments and threaten the native biodiversity. Molecular genetic approaches have been found to be powerful tools for investigating the ecological and evolutionary aspects of biological invasions because the genetic structure and level of genetic variation of an invasive species are changed following its invasion. The present article reviews the use of molecular markers in addressing various aspects of invasive species. The application of these techniques has shown that many invasive species are actually "cryptic" species – species whose uniqueness is only recognizable at the genetic level. An estimation of the actual number of invasive species is essential when evaluating its ecological and economic impacts. Molecular genetic approaches have also enabled the source populations of invasive species to be identified. Reconstructions of invasion histories are crucial to preventing future invasions and conserving the native biodiversity, while comparisons of genetic variations between the native and introduced populations provide valuable opportunities to elucidate the mechanisms of rapid adaptation demonstrated by many invasive species.  相似文献   

7.
Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for conclusions about future range shifts and extinctions. Our common data set entailed the current ranges of 100 randomly selected mammal species found in the western hemisphere. Using these range maps, we compared six methods for modeling predicted future ranges. Predicted future distributions differed markedly across the alternative modeling approaches, which in turn resulted in estimates of extinction rates that ranged between 0% and 7%, depending on which model was used. Random forest predictors, a model‐averaging approach, consistently outperformed the other techniques (correctly predicting >99% of current absences and 86% of current presences). We conclude that the types of models used in a study can have dramatic effects on predicted range shifts and extinction rates; and that model‐averaging approaches appear to have the greatest potential for predicting range shifts in the face of climate change.  相似文献   

8.
9.
Biomarkers are used to predict phenotypical properties before these features become apparent and, therefore, are valuable tools for both fundamental and applied research. Diagnostic biomarkers have been discovered in medicine many decades ago and are now commonly applied. While this is routine in the field of medicine, it is of surprise that in agriculture this approach has never been investigated. Up to now, the prediction of phenotypes in plants was based on growing plants and assaying the organs of interest in a time intensive process. For the first time, we demonstrate in this study the application of metabolomics to predict agronomic important phenotypes of a crop plant that was grown in different environments. Our procedure consists of established techniques to screen untargeted for a large amount of metabolites in parallel, in combination with machine learning methods. By using this combination of metabolomics and biomathematical tools metabolites were identified that can be used as biomarkers to improve the prediction of traits. The predictive metabolites can be selected and used subsequently to develop fast, targeted and low‐cost diagnostic biomarker assays that can be implemented in breeding programs or quality assessment analysis. The identified metabolic biomarkers allow for the prediction of crop product quality. Furthermore, marker‐assisted selection can benefit from the discovery of metabolic biomarkers when other molecular markers come to its limitation. The described marker selection method was developed for potato tubers, but is generally applicable to any crop and trait as it functions independently of genomic information.  相似文献   

10.
A thorough understanding of ecological networks relies on comprehensive information on trophic relationships among species. Since unpicking the diet of many organisms is unattainable using traditional morphology‐based approaches, the application of high‐throughput sequencing methods represents a rapid and powerful way forward. Here, we assessed the application of DNA metabarcoding with nearly universal primers for the mitochondrial marker cytochrome c oxidase I in defining the trophic ecology of adult brown shrimp, Crangon crangon, in six European estuaries. The exact trophic role of this abundant and widespread coastal benthic species is somewhat controversial, while information on geographical variation remains scant. Results revealed a highly opportunistic behaviour. Shrimp stomach contents contained hundreds of taxa (>1,000 molecular operational taxonomic units), of which 291 were identified as distinct species, belonging to 35 phyla. Only twenty ascertained species had a mean relative abundance of more than 0.5%. Predominant species included other abundant coastal and estuarine taxa, including the shore crab Carcinus maenas and the amphipod Corophium volutator. Jacobs’ selectivity index estimates based on DNA extracted from both shrimp stomachs and sediment samples were used to assess the shrimp's trophic niche indicating a generalist diet, dominated by crustaceans, polychaetes and fish. Spatial variation in diet composition, at regional and local scales, confirmed the highly flexible nature of this trophic opportunist. Furthermore, the detection of a prevalent, possibly endoparasitic fungus (Purpureocillium lilacinum) in the shrimp's stomach demonstrates the wide range of questions that can be addressed using metabarcoding, towards a more robust reconstruction of ecological networks.  相似文献   

11.
Molecular population genetic analyses have become an integral part of ecological investigation and population monitoring for conservation and management. Microsatellites have been the molecular marker of choice for such applications over the last several decades, but single nucleotide polymorphism (SNP) markers are rapidly expanding beyond model organisms. Coho salmon (Oncorhynchus kisutch) is native to the north Pacific Ocean and its tributaries, where it is the focus of intensive fishery and conservation activities. As it is an anadromous species, coho salmon typically migrate across multiple jurisdictional boundaries, complicating management and requiring shared data collection methods. Here, we describe the discovery and validation of a suite of novel SNPs and associated genotyping assays which can be used in the genetic analyses of this species. These assays include 91 that are polymorphic in the species and one that discriminates it from a sister species, Chinook salmon. We demonstrate the utility of these SNPs for population assignment and phylogeographic analyses, and map them against the draft trout genome. The markers constitute a large majority of all SNP markers described for coho salmon and will enable both population‐ and pedigree‐based analyses across the southern part of the species native range.  相似文献   

12.
Vegetation surveys have a long tradition in ecological studies, but several limitations in the morphological identification of species have been recognized. The objective of this study was to evaluate the effectiveness of DNA barcoding in plant species identification to save field technicians time and resources. Vegetation surveys were performed in four plots of semi‐dry grassland in the Italian subalpine region of Lombardy. Two identification approaches were employed: a conventional morphological identification and a molecular multi‐marker DNA barcoding method. Results showed that morphological identification of 49 species collected from the study area (five field inspections) required a substantial amount of time to complete relative to the molecular method. The same 49 samples were analysed using the following DNA multi‐marker barcodes: rbcL, matK and trnHpsbA. rbcL showed 100% amplification success with standard primers, but low interspecific genetic variability. matK demonstrated some amplification problems with standard primers; however, consistent genetic diversity was observed. Finally, the trnHpsbA spacer region exhibited reliable amplification success and the highest molecular variability. In a comparison with publicly available databases, trnHpsbA and matK returned the highest proportion of identified samples, whereas rbcL returned several misidentifications. The DNA barcoding approach is a powerful tool in vegetation surveys and may significantly reduce the time and cost spent for species identification. However, to effectively apply DNA barcoding in vegetation surveys, exhaustive local or regional molecular databases must be defined. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 518–529.  相似文献   

13.
Rapid and accurate identification of species is required for the biological control of pest Noctuoidea moths. DNA barcodes and thin‐film biosensor chips are two molecular approaches that have gained wide attention. Here, we compare these two methods for the identification of a limited number of Noctuoidea moth species. Based on the commonly used mitochondrial gene cytochrome c oxidase I (the standard DNA barcode for animal species), 14 probes were designed and synthesized for 14 species shared by two national nature reserves in Beijing and Hebei, China. Probes ranged in length from 18 to 27 bp and were designed as mismatch probes to guarantee that there were at least three base differences between the probe and nontarget sequences. The results on the chip could be detected by the naked eye without needing special equipment. No cross‐hybridizations were detected although we tested all probes on the 14 target and 24 nontarget Noctuoidea species. The neighbour‐joining tree of the 38 species based on COI sequences gave 38 highly supported independent groups. Both DNA barcoding and thin‐film biosensor chips, based on the COI gene, are able to accurately identify and discriminate the 14 targeted moth species in this study. Because of its speed, high accuracy and low cost, the thin‐film biosensor chip is a very practical means of species identification. Now, a more comprehensive chip will be developed for the identification of additional Noctuoidea moths for pest control and ecological protection.  相似文献   

14.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   

15.
The implementation of DNA in taxonomic study is in its infancy because the association of the amount and type of nucleotide change with species boundaries has not been fully examined for most taxa. Mitochondrial cytochrome c oxidase I (COI) nucleotide data is currently the most popular molecular marker for delimiting species boundaries and a standard pair‐wise nucleotide divergence between groups of individuals has been suggested for the recognition of new species. It is unlikely that such a standard would be applicable across animal species, but the association of the amount and type of nucleotide change with species boundaries could help with the establishment of a taxon‐specific DNA taxonomy. This study utilizes DNA data from nuclear and mitochondrial genes to improve the taxonomy of an important forest beetle pest, Ips. Amount and type of nucleotide difference are associated with monophyletic species based on a cladistic analysis of these data. As a result, a new species from China is described for a clade of beetles whose nucleotide differences exceeded the amount of evolutionary change observed within currently recognized species. The COI data are analyzed independently with an expanded taxon data set, including pair‐wise nucleotide differences between recognized sister species. The wide range of average intraspecific pair‐wise nucleotide difference (0–10.0%) suggests limitations to the application of a standard percent nucleotide difference as a means to identify species boundaries. At most, average COI nucleotide intraspecific difference provides an informal guide to identify potential clades that may warrant further systematic investigation. © The Willi Hennig Society 2007.  相似文献   

16.
The increasing use of high‐throughput sequencing platforms has made the isolation of pure, high molecular weight DNA a primary concern for studies of a diverse range of organisms. Purification of DNA remains a significant challenge in many tissue and sample types due to various organic and inorganic molecules that coprecipitate with nucleic acids. Molluscs, for example, contain high concentrations of polysaccharides which often coprecipitate with DNA and can inhibit downstream enzymatic reactions. We modified a low‐salt CTAB (MoLSC) extraction protocol to accommodate contaminant‐rich animal tissues and compared this method to a standard CTAB extraction protocol and two commercially available animal tissue DNA extraction kits using oyster adductor muscle. Comparisons of purity and molecular integrity showed that our in‐house protocol yielded genomic DNA generally free of contaminants and shearing, whereas the traditional CTAB method and some of the commercial kits yielded DNA unsuitable for some applications of massively parallel sequencing. Our open‐source MoLSC protocol provides a cost‐effective, scalable, alternative DNA extraction method that can be easily optimized and adapted for sequencing applications in other contaminant‐rich samples.  相似文献   

17.
Uncontrolled fibrous protein aggregation is implicated in a range of aberrant biological phenomena. Much effort has consequently been directed towards establishing quantitative in vitro assays of this process with the aim of probing amyloid growth in molecular detail as well as elucidating the effect of additional species on this reaction. In this paper, we discuss some recent approaches based on label-free technologies focussed on achieving these objectives. Several biosensor techniques have been developed to monitor biomolecular assembly without the requirement for fluorophore marker molecules; in particular quartz crystal microbalance and surface plasmon resonance measurements provide advantageous alternatives to traditional spectroscopic methods and are currently receiving increasing attention in the context of amyloid growth assays.  相似文献   

18.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   

19.
Age structure is a fundamental aspect of animal population biology. Age is strongly related to individual physiological condition, reproductive potential and mortality rate. Currently, there are no robust molecular methods for age estimation in birds. Instead, individuals must be ringed as chicks to establish known‐age populations, which is a labour‐intensive and expensive process. The estimation of chronological age using DNA methylation (DNAm) is emerging as a robust approach in mammals including humans, mice and some non‐model species. Here, we quantified DNAm in whole blood samples from a total of 71 known‐age Short‐tailed shearwaters (Ardenna tenuirostris) using digital restriction enzyme analysis of methylation (DREAM). The DREAM method measures DNAm levels at thousands of CpG dinucleotides throughout the genome. We identified seven CpG sites with DNAm levels that correlated with age. A model based on these relationships estimated age with a mean difference of 2.8 years to known age, based on validation estimates from models created by repeated sampling of training and validation data subsets. Longitudinal observation of individuals re‐sampled over 1 or 2 years generally showed an increase in estimated age (6/7 cases). For the first time, we have shown that epigenetic changes with age can be detected in a wild bird. This approach should be of broad interest to researchers studying age biomarkers in non‐model species and will allow identification of markers that can be assessed using targeted techniques for accurate age estimation in large population studies.  相似文献   

20.
To aid in identifying key predators of Proconiini sharpshooter species present in California, we developed and tested molecular diagnostic markers for the glassy‐winged sharpshooter, Homalodisca coagulata (Say), and smoke‐tree sharpshooter, Homalodisca liturata (Ball) (Homoptera: Cicadellidae). Two different types of markers were compared, those targeting single‐copy sequence characterized amplified regions (SCAR) and mitochondrial markers targeting the multicopy cytochrome oxidase subunit genes I (COI) and II (COII). A total of six markers were developed, two SCAR and four mitochondrial COI or COII markers. Specificity assays demonstrated that SCAR marker HcF5/HcR7 was H. coagulata specific and HcF6/HcR9 was H. coagulata/H. liturata specific. COI (HcCOI‐F/R) and COII (HcCOII‐F4/R4) markers were H. coagulata specific, COII (G/S‐COII‐F/R) marker was H. coagulata/H. liturata specific, and lastly, COII marker (Hl‐COII‐F/R) was H. liturata specific. Sensitivity assays using genomic DNA showed the COI marker to be the most sensitive marker with a detection limit of 6 pg of DNA. This marker was 66‐fold more sensitive than marker Hl‐COII‐F/R that showed a detection limit of 400 pg of DNA. In addition, the COI marker was 4.2‐fold more sensitive than the COII marker. In predator gut assays, the COI and COII markers demonstrated significantly higher detection efficiency than the SCAR markers. Furthermore, the COI marker demonstrated slightly higher detection efficiency over the COII marker. Lastly, we describe the inclusion of an internal control (28S amplification) for predation studies performing predator gut analyses utilizing the polymerase chain reaction (PCR). This control was critical in order to monitor reactions for PCR failures, PCR inhibitors, and for the presence of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号