首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Soft‐bodied marine taxa, like ribbon worms (Nemertea), often lack clear diagnostic morphological characters impeding traditional species delimitation. Therefore, recent studies concentrated on molecular genetic methods to solve taxonomic issues. Different delimitation methods were employed to explore species boundaries and the presence of cryptic species. However, the performance of the different delimitation methods needs to be tested. A particularly promising nemertean genus in this regard is the palaeonemertean genus Cephalothrix that is commonly found in European waters. In order to gain information on the number and distribution of European cephalotrichids and to test different tree‐based and non‐tree‐based delimitation methods, we analyzed a dataset comprising the barcoding region of the mitochondrial cytochrome c oxidase subunit I (COI) of 215 European Cephalothrix specimens, of which 78 were collected for this study. Our results show the presence of 12–13 European lineages of which several can be assigned to known European species. Analyzing a second dataset comprising 74 additional sequences from the Pacific and the Atlantic Oceans helped identify some of the unassigned European specimens. One resulting clade seems to represent a non‐native introduced Cephalothrix species, while another has never been recorded from Europe before. In our analysis, especially the tree‐based methods and the phylogenetic analysis proved to be a useful tool when delimiting species. It remains unclear whether the different identified clades result from cryptic speciation or from a high genetic variability of the COI gene.  相似文献   

3.
4.
We gathered molecular data to assess phylogenetic and phylogeographic patterns for widespread lineages of Neotropical forest falcons in the genus Micrastur to: 1) investigate the comparative phylogeography of four species from the M. ruficollis complex (M. ruficollis, M. gilvicollis, M. plumbeus and M. mintoni), to identify the temporal and spatial context of the group's diversification; and 2) to reevaluate, based on molecular characters, the taxonomic status and interspecific boundaries within this complex. Molecular phylogenies were based on sequences of the mitochondrial genes ND2 and Cyt b and the nuclear genes FIB5 and MUSK from 119 specimens, including M. mirandollei and M. semitorquatus as outgroups. The phylogenetic trees obtained by BI and a Species Tree analysis recovered the monophyly of currently accepted species belonging to the M. ruficollis complex. The dates in our tree indicate that the separation of species within the complex occurred 2–4 million yr ago, initiating during the Neogene (Pliocene). However, when compared to most such widely distributed Neotropical lineages, the diversification within the M. ruficollis complex appears more recent (i.e. centered in the Late Pleistocene). Our results demonstrate the existence of eleven geographic lineages (subclades) in M. ruficollis, M. gilvicollis and M. mintoni, which differ genetically from each other and therefore can be interpreted as distinct evolutionary lineages and possibly separate species under lineage‐based species concepts. However, BPP results failed to recognize with strong statistical support any of these subclades as distinct species. Distinct subclades in the M. ruficollis complex are limited by the principal tributaries of the Amazon River and the Andes, suggesting that these modern barriers limit gene flow and thereby could have promoted differentiation mostly during the Pleistocene. However, our results indicate widely disparate responses to individual barriers across subclades, supporting lineage‐specific histories throughout the Neotropics.  相似文献   

5.

Aim

Understanding the evolution of the latitudinal diversity gradient (i.e. increase in species diversity towards the tropics) is a prominent issue in ecology and biogeography. Disentangling the relative contributions of environment and evolutionary history in shaping this gradient remains a major challenge because their relative importance has been found to vary across regions and taxa. Here, using the global distributions and a molecular phylogeny of Rhododendron, one of the largest genera of flowering plants, we aim to compare the relative contributions of contemporary environment, evolutionary time and diversification rates in generating extant species diversity patterns.

Location

Global.

Time period

Undefined.

Major taxa studied

Rhododendron.

Methods

We compiled the global distributions of all Rhododendron species, and constructed a dated molecular phylogeny using nine chloroplast genes and seven nuclear regions. By integrating these two datasets, we estimated the temporal trends of Rhododendron diversification, and explored the global patterns of its species diversity, net diversification rates, and species ages. Next, we reconstructed the geographical ancestral area of the clade. Finally, we compared the relative contribution of contemporary environment, time‐for‐speciation, and diversification rates on the species diversity pattern of Rhododendron.

Results

In contrast to the predictions of the time‐for‐speciation hypothesis, we found that although Rhododendron originated at a temperate latitude, its contemporary species diversity is highest in the tropics/subtropics, suggesting an into‐the‐tropics colonization for this genus. We found that the elevated diversification induced by heterogeneous environmental conditions in the tropics/subtropics shapes the global pattern of Rhododendron diversity.

Main conclusions

Our findings support tropical and subtropical mountains as not only biodiversity and endemism hotspots, but also as cradles for the diversification of Rhododendron. Our study emphasizes the need of unifying ecological and evolutionary approaches in order to gain comprehensive understanding of the mechanisms underlying the global patterns of plant diversity.  相似文献   

6.
Despite its amazing biodiversity, the Eastern Mediterranean remains a highly understudied region when compared withthe Western Mediterranean, restricting our understanding of diversity across the entire Mediterranean. Here we use a combination of molecular markers and presence/absence data from all species of the Eastern Mediterranean genus Ricotia collected across its full geographic range to determine historical, ecological, and evolutionary factors responsible for lineage-specific diversification in the Eastern Mediterranean. Network analysis based on molecular data revealed a high genetic structure within all lineages, and phylogenetic reconstructions based on the multispecies coalescent showed that within-lineage diversification corresponded to the onset of the Mediterranean climate. Reconstruction of ancestral histories indicates that the genus originated within Anatolia and spread across the Eastern Mediterranean and Levant using the Taurus mountains. Ecological niche models suggest that local populations did not go through any major distributional shifts and have persisted in present-day habitats since the Last Glacial Maximum. Furthermore, niche differentiation tests revealed significant differences between closely related species and showed the main variables predicting species limits to be different for each species. Our results give crucial information on the patterns and processes shaping diversity in the Eastern Mediterranean and show the main factors promoting diversification to be local environmental dynamics and ecological specialization and not large-scale latitudinal movements, as often reported for southern Europe. By determining local and regional patterns of diversification in an Eastern Mediterranean genus, we further our understanding of the major trends influencing plant diversity in the Mediterranean basin as a whole.  相似文献   

7.
Mesalina are small lacertid lizards occurring in the Saharo‐Sindian deserts from North Africa to the east of the Iranian plateau. Earlier phylogenetic studies indicated that there are several species complexes within the genus and that thorough taxonomic revisions are needed. In this study, we aim at resolving the phylogeny and taxonomy of the M. brevirostris species complex distributed from the Middle East to the Arabian/Persian Gulf region and Pakistan. We sequenced three mitochondrial and three nuclear gene fragments, and in combination with species delimitation and species‐tree estimation, we infer a time‐calibrated phylogeny of the complex. The results of the genetic analyses support the presence of four clearly delimited species in the complex that diverged approximately between the middle Pliocene and the Pliocene/Pleistocene boundary. Species distribution models of the four species show that the areas of suitable habitat are geographically well delineated and nearly allopatric, and that most of the species have rather divergent environmental niches. Morphological characters also confirm the differences between the species, although sometimes minute. As a result of all these lines of evidence, we revise the taxonomy of the Mesalina brevirostris species complex. We designate a lectotype for Mesalina brevirostris Blanford, 1874; resurrect the available name Eremias bernoullii Schenkel, 1901 from the synonymy of M. brevirostris; elevate M. brevirostris microlepis (Angel, 1936) to species status; and describe Mesalina saudiarabica, a new species from Saudi Arabia.  相似文献   

8.
9.
The time frame and geographical patterns of diversification processes in European temperate‐montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered speciation in temperate‐montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent‐based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid‐Pleistocene Transition (830–580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered allopatric speciation in temperate‐montane plant species during the climatic deterioration that occurred during the last phase of the Mid‐Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro‐ and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.  相似文献   

10.
The alteration in palaeodrainage river connections has shaped patterns of speciation, genetic diversity and the geographical distribution of the species‐rich freshwater fauna of North America. The integration of ancestral range reconstruction methods and divergence time estimates provides an opportunity to infer palaeodrainage connectivity and test alternative palaeodrainage hypotheses. Members of the Orangethroat Darter clade, Ceasia, are endemic to southeastern North America and occur north and south of the Pleistocene glacial front, a distributional pattern that makes this clade of closely related species an ideal system to investigate the number and location of glacial refugia and compare alternative hypotheses regarding the proposed evolution of the Teays‐Mahomet palaeodrainage. This study utilized time‐calibrated mitochondrial and nuclear gene phylogenies and present‐day geographical distributions to investigate hypothesized Teays‐Mahomet River connections through time using a dispersal–extinction–cladogenesis (DEC) framework. Results of DEC ancestral area reconstructions indicate that the Teays‐Mahomet River was a key dispersal route between disjunct highland regions connecting the Mississippi River tributaries to the Old‐Ohio Drainage minimally at two separate occasions during the Pleistocene. There was a dynamic interplay between palaeodrainage connections through time and postglacial range expansion from three glacial refugia that shaped the current genetic structure and geographical distributions of the species that comprise Ceasia.  相似文献   

11.
The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai‐Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re‐examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River.  相似文献   

12.
13.
The tropical alga previously recognized as Gibsmithia hawaiiensis (Dumontiaceae, Rhodophyta) was recently suggested to represent a complex of species distributed throughout the Indo‐Pacific Ocean and characterized by a peculiar combination of hairy (pilose) gelatinous lobes growing on cartilaginous stalks. Phylogenetic reconstructions based on three genetic markers are presented here with the inclusion of new samples. Further diversity is reported within the complex, with nine lineages spread in four major phylogenetic groups. The threshold between intra‐ and interspecific relationships was assessed by species delimitation methods, which indicate the existence of 8–10 putative species in the complex. Two species belonging to the G. hawaiiensis complex are described here: Gibsmithia malayensis sp. nov. from the Coral Triangle and Gibsmithia indopacifica sp. nov., widely distributed in the Central and Eastern Indo‐Pacific. Morphological differences in the vegetative and reproductive structures of the newly described species are provided and compared to the previously described species of the complex. Additional lineages represent putative species, which await further investigation to clarify their taxonomic status. Gibsmithia hawaiiensis sensu stricto is confirmed to be endemic to the Hawaiian Islands, and Gibsmithia eilatensis is apparently confined to the Red Sea, with an expanded distribution in the region. New records of the G. hawaiiensis complex are reported from Egypt, Saudi Arabia, Indonesia, Philippines, and the Federated States of Micronesia, indicating that the complex is more broadly distributed than previously considered. The isolated position of Gibsmithia within the Dumontiaceae is corroborated by molecular data.  相似文献   

14.
15.
16.
Rhizocephalan barnacles have been reported to parasitize a wide range of king crab species (Lithodidae). So far all these parasites have been assigned to a single species, Briarosaccus callosus Boschma, 1930, which is assumed to have a global distribution. Here we investigate Briarosaccus specimens from three different king crab hosts from the fjord systems of Southeastern Alaska: Lithodes aequispinus Benedict, 1895, Paralithodes camtschaticus (Tilesius, 1815), and Paralithodes platypus (Brandt, 1850). Using molecular markers and by morphological comparison we show that Briarosaccus specimens from these three commercial exploited king crabs are in fact morphologically distinct from B. callosus, and further represent two separate species which we describe. The two new species, Briarosaccus auratum n. sp. and B. regalis n. sp., are cryptic by morphological means and were identified as distinct species by the use of genetic markers (COI and 16S). They occur sympatrically, yet no overlap in king crab hosts occurs, with B. auratum n. sp. only found on L. aequispinus, and B. regalis n. sp. as parasite of the two Paralithodes hosts. © 2015 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

17.
Population studies have revealed that the fungal ectomycorrhizal morphospecies Tricholoma scalpturatum consists of at least two genetically distinct groups that occur sympatrically in several geographical areas. This discovery prompted us to examine species boundaries and relationships between members formerly assigned to T. scalpturatum and allied taxa using phylogenetic analyses. Sequence data were obtained from three nuclear DNA regions [internal transcribed spacer (ITS), gpd and tef], from 101 carpophores collected over a large geographical range in Western Europe, and some reference sequences from public databases. The ITS was also tested for its applicability as DNA barcode for species delimitation. Four highly supported phylogenetic clades were detected. The two previously detected genetic groups of T. scalpturatum were assigned to the phylospecies Tricholoma argyraceum and T. scalpturatum. The two remaining clades were referred to as Tricholoma cingulatum and Tricholoma inocybeoides. Unexpectedly, T. cingulatum showed an accelerated rate of evolution that we attributed to narrow host specialization. This study also reveals recombinant ITS sequences in T. inocybeoides, suggesting a hybrid origin. The ITS was a useful tool for the determination of species boundaries: the mean value of intraspecific genetic distances in the entire ITS region (including 5.8S rDNA) was <0.2%, whereas interspecific divergence estimates ranged from 1.78% to 4.22%. Apart from giving insights into the evolution of the T. scalpturatum complex, this study contributes to the establishment of a library of taxonomically verified voucher specimens, an a posteriori correlation between phenotype and genotype, and DNA barcoding of ectomycorrhizal fungi.  相似文献   

18.
Opsariichthine (sensu Oceanologi Et Limnologia Sinica, 1982, 13, 293–298) is a cyprinid group consisting of five genera and endemic to East Asia. Previous studies suggested that there may be many possible cryptic species in this group, but this has not been confirmed. In this study, using mitochondrial cyt b sequences on 1,388 samples and 739 haplotypes, we showed very high species diversity within this group. The results showed that phylogenetic relationships of the opsariichthine group were as ([NipponocyprisParazaccoCandidia] + [Zacco + Opsariichthys]), and there were multiple deep lineages within several species, flagging putative cryptic species. When a 3% genetic distance was used as a threshold for species delimitation, 35 haplogroups were found, nine haplogroups in CandidiaParazaccoNipponocypris group, six haplogroups in the Zacco group, and 20 haplogroups in the Opsariichthys group. We consider all of them to be putative until determination of distinct species based on the tree topology, geographic distributions, or a combination of both. In addition, two kinds of species delimitation tools, ABGD and PTP, were applied to construct molecular operational taxonomic units (MOTUs). The ABGD method revealed nine MOTUs in CandidiaParazaccoNipponocypris group, two MOTUs in the Zacco group, and 17 MOTUs in the Opsariichthys group. And the PTP method revealed 10 MOTUs in CandidiaParazaccoNipponocypris group, 10 MOTUs in the Zacco group, and 29 MOTUs in the Opsariichthys group. Therefore, there should be more species in the opsariichthine group than presently described. Based on the molecular data and morphological characteristics, we proposed Opsariichthys macrolepis as a valid species and described its morphological diagnostic characters.  相似文献   

19.
Phylogenetic relationships between taxa are not necessarily reflected by morphological data due to widespread homoplasy and convergence. However, combining morphological and molecular data provides insights into the evolution of biological forms and into the potential factors involved. Here we focus on a complex of three taxa of bats with unclear taxonomic affinities: Myotis myotis, Myotis blythii and Myotis punicus. Traditional morphometric methods failed to separate them, whereas recent molecular‐based studies suggested that they constitute separate biological species. In the present study, landmark‐based geometric morphometrics methods have been used to analyse the skull variability of 218 specimens belonging to this species complex. Patterns of size and shape delimitate three morphological groups that are congruent with the proposed taxonomic assignments, and therefore support species rank for all three major groups. These morphometrics results, however, suggest that M. myotis and M. punicus share shape characteristics in the rostrum and in the posterior part of the skull that differ from M. blythii. Because previous molecular phylogenetic analyses suggested that M. myotis and M. blythii are sister species, we interpret the similitude in skull morphology between M. myotis and M. punicus as a convergence probably related to their similar feeding habits. Within the taxon M. punicus, the skull of Corsican and Sardinian populations significantly differs from that of Maghrebian ones, suggesting the existence of further cryptic taxonomic diversity. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 529–538.  相似文献   

20.
Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned‐ground features (PGFs) and adjacent vegetated between patterned‐ground features (bPGFs). Fungal communities were analysed via sequencing of 7834 ITS‐LSU clones. We recorded 1834 OTUs – nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders and 120 families, but were dominated by Ascomycota, with one‐fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号