首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single nucleotide polymorphisms (SNPs) are essential to the understanding of population genetic variation and diversity. Here, we performed restriction‐site‐associated DNA sequencing (RAD‐seq) on 72 individuals from 13 Chinese indigenous and three introduced chicken breeds. A total of 620 million reads were obtained using an Illumina Hiseq2000 sequencer. An average of 75 587 SNPs were identified from each individual. Further filtering strictly validated 28 895 SNPs candidates for all populations. When compared with the NCBI dbSNP (chicken_9031), 15 404 SNPs were new discoveries. In this study, RAD‐seq was performed for the first time on chickens, implicating the remarkable effectiveness and potential applications on genetic analysis and breeding technique for whole‐genome selection in chicken and other agricultural animals.  相似文献   

2.
3.
Restriction‐site associated DNA sequencing (RAD‐seq) can identify and score thousands of genetic markers from a group of samples for population‐genetics studies. One challenge of de novo RAD‐seq analysis is to distinguish paralogous sequence variants (PSVs) from true single‐nucleotide polymorphisms (SNPs) associated with orthologous loci. In the absence of a reference genome, it is difficult to differentiate true SNPs from PSVs, and their impact on downstream analysis remains unclear. Here, we introduce a network‐based approach, PMERGE that connects fragments based on their DNA sequence similarity to identify probable PSVs. Applying our method to de novo RAD‐seq data from 150 Atlantic salmon (Salmo salar) samples collected from 15 locations across the Southern Newfoundland coast allowed the identification of 87% of total PSVs identified through alignment to the Atlantic salmon genome. Removal of these paralogs altered the inferred population structure, highlighting the potential impact of filtering in RAD‐seq analysis. PMERGE is also applied to a green crab (Carcinus maenas) data set consisting of 242 samples from 11 different locations and was successfully able to identify and remove the majority of paralogous loci (62%). The PMERGE software can be run as part of the widely used Stacks analysis package.  相似文献   

4.
Tony Gamble 《Molecular ecology》2016,25(10):2114-2116
Next‐generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. 2010 ). Among the most impressive of these sequencing innovations is restriction site‐associated DNA sequencing or RAD‐seq (Baird et al. 2008 ; Andrews et al. 2016 ). RAD‐seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD‐seq data has been to identify sex‐specific genetic markers, markers found in one sex but not the other (Baxter et al. 2011 ; Gamble & Zarkower 2014 ). Sex‐specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon 1998 ; Mossman & Waser 1999 ), the management and breeding of endangered species (Taberlet et al. 1993 ; Griffiths & Tiwari 1995 ; Robertson et al. 2006 ) and sexing embryonic material (Hacker et al. 1995 ; Smith et al. 1999 ). Furthermore, sex‐specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank 2010 ; Gamble & Zarkower 2014 ). Thus, species with male‐specific markers have male heterogamety (XY) while species with female‐specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi ( 2016 ) illustrate the ease by which RAD‐seq data can generate sex‐specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD‐seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig.  1 ), Fowler & Buonaccorsi ( 2016 ) uncover shared sex‐specific markers and a conserved sex chromosome system.  相似文献   

5.
Wild specimens are often collected in challenging field conditions, where samples may be contaminated with the DNA of conspecific individuals. This contamination can result in false genotype calls, which are difficult to detect, but may also cause inaccurate estimates of heterozygosity, allele frequencies and genetic differentiation. Marine broadcast spawners are especially problematic, because population genetic differentiation is low and samples are often collected in bulk and sometimes from active spawning aggregations. Here, we used contaminated and clean Pacific herring (Clupea pallasi) samples to test (a) the efficacy of bleach decontamination, (b) the effect of decontamination on RAD genotypes and (c) the consequences of contaminated samples on population genetic analyses. We collected fin tissue samples from actively spawning (and thus contaminated) wild herring and nonspawning (uncontaminated) herring. Samples were soaked for 10 min in bleach or left untreated, and extracted DNA was used to prepare DNA libraries using a restriction site‐associated DNA (RAD) approach. Our results demonstrate that intraspecific DNA contamination affects patterns of individual and population variability, causes an excess of heterozygotes and biases estimates of population structure. Bleach decontamination was effective at removing intraspecific DNA contamination and compatible with RAD sequencing, producing high‐quality sequences, reproducible genotypes and low levels of missing data. Although sperm contamination may be specific to broadcast spawners, intraspecific contamination of samples may be common and difficult to detect from high‐throughput sequencing data and can impact downstream analyses.  相似文献   

6.
Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double‐digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single‐end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11 000 polymorphic loci per library of 6–30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost‐effective generation of variable and reproducible genetic markers.  相似文献   

7.
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking.  相似文献   

8.
The population genetics of the Antarctic neritic krill species Euphausia crystallorophias was examined by nucleotide sequence variation in its mitochondrial DNA. A 616 base pair region of the cytochrome c oxidase subunit I (COI) gene was screened for mutations by single-strand conformational polymorphism (SSCP) combined with restriction digestion. E. crystallorophias caught in three different regions of the Antarctic coastline were used--two samples from the Mertz Glacier Polynya and one sample each from the western side of the Antarctic Peninsula and from the Davis Sea. Significant genetic differences between krill samples were identified. However, the extent of these differences did not correlate with the degree of geographic separation between the sampling sites. This suggests that the genetic structuring may be the result of small-scale differentiation rather than differentiation between resident populations in separate parts of the Southern Ocean. The possibility that genetic differences between samples within a region are as important as differences between regions has implications for other studies of krill population genetics.  相似文献   

9.
The trade‐offs of using single‐digest vs. double‐digest restriction site‐associated DNA sequencing (RAD‐seq) protocols have been widely discussed. However, no direct empirical comparisons of the two methods have been conducted. Here, we sampled a single population of Gulf pipefish (Syngnathus scovelli) and genotyped 444 individuals using RAD‐seq. Sixty individuals were subjected to single‐digest RAD‐seq (sdRAD‐seq), and the remaining 384 individuals were genotyped using a double‐digest RAD‐seq (ddRAD‐seq) protocol. We analysed the resulting Illumina sequencing data and compared the two genotyping methods when reads were analysed either together or separately. Coverage statistics, observed heterozygosity, and allele frequencies differed significantly between the two protocols, as did the results of selection components analysis. We also performed an in silico digestion of the Gulf pipefish genome and modelled five major sources of bias: PCR duplicates, polymorphic restriction sites, shearing bias, asymmetric sampling (i.e., genotyping fewer individuals with sdRAD‐seq than with ddRAD‐seq) and higher major allele frequencies. This combination of approaches allowed us to determine that polymorphic restriction sites, an asymmetric sampling scheme, mean allele frequencies and to some extent PCR duplicates all contribute to different estimates of allele frequencies between samples genotyped using sdRAD‐seq versus ddRAD‐seq. Our finding that sdRAD‐seq and ddRAD‐seq can result in different allele frequencies has implications for comparisons across studies and techniques that endeavour to identify genomewide signatures of evolutionary processes in natural populations.  相似文献   

10.
Detection of population genetic structure of zooplankton at medium‐to‐small spatial scales in the absence of physical barriers has remained challenging and controversial. The large population sizes and high rates of gene flow characteristic of zooplankton have made resolution of geographical differentiation very difficult, especially when using few genetic markers and assuming equilibrium conditions. Next‐generation sequencing now allows simultaneous sampling of hundreds to thousands of genetic markers; new analytical approaches allow studies under nonequilibrium conditions and directional migration. Samples of the North Atlantic Ocean planktonic copepod, Centropages typicus, were analysed using restriction site‐associated DNA (RAD) sequencing on a PROTON platform. Although prior studies revealed no genetic differentiation of populations across the geographical range of the species, analysis of RAD tags showed significant structure across the North Atlantic Ocean. We also compared the likelihood for models of connectivity among NW Atlantic populations under various directional flow scenarios that replicate oceanographic conditions of the sampled domain. High‐density marker sampling with RAD sequencing markedly outperformed other technical and analytical approaches in detection of population genetic structure and characterization of connectivity of this high geneflow zooplankton species.  相似文献   

11.
Restriction site‐associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single‐nucleotide polymorphisms. As an empirical example, we use a double‐digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high‐altitude mountains in Mexico.  相似文献   

12.
Sustainable management of sea mullet (Mugil cephalus) fisheries needs to account for recent observations of regional‐scale differentiation. Population genetic analysis is sought to assess the situation of this ecologically and economically important fish species in eastern Australian waters. Here, we report (i) new population genetic markers [single nucleotide polymorphisms (SNPs) and potential microsatellites], (ii) first estimates of spatial genetic differentiation and (iii) prospective power tests for designing more comprehensive studies. Six DNA samples from three sampling regions (North Queensland, South Queensland and central New South Wales) on the eastern coast of Australia were used to prepare restriction site associated DNA (RAD) tag libraries from genomic DNA digested with EcoRI and MseI. A pooled sample of regional RAD tag libraries was sequenced using the Roche GS‐FLX Titanium platform. A total of 172 837 raw reads (17.4 Mbp) were retrieved, 95 500 of which were used to discover 1267 SNPs and 1417 microsatellites. A subset of 161 SNPs was validated based on 63 additional DNA samples genotyped using the Sequenom MassArray (iPLEX Gold chemistry). Altogether 92 SNPs (57%) were confirmed, with 40% of these marking fixed variants between northern and southern sampling regions. Our preliminary findings indicate a multispecies fishery stock of M. cephalus in eastern Australian waters, but suggest that strong genetic differentiation occurs north of major fishing grounds. Low potential differentiation within major fishing grounds (e.g. FST = 0.0025) can be resolved with a likely power ≥67% by using standard sample sizes of 50 and validated subsets of available markers.  相似文献   

13.
Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long‐term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay transfer between 1997 and 2014. RAD‐seq genotyping revealed that the stenoecious floodplain species Arabis nemorensis is co‐occurring with individuals that, based on ploidy, ITS‐sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay transfer on genetic diversity also depend on the genetic make‐up of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay transfer for habitat restoration and emphasize the importance of prerestoration characterization of microgeographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, that is maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo‐ and reference‐based RAD‐seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.  相似文献   

14.
Summary Samples of Antarctic krill E. superba from six locations near Prydz Bay were analysed electrophoretically to detect genetically-based protein variation. Analyses of allele distributions at four polymorphic loci indicate no evidence of significant heterogeneity, a result consistent with the hypothesis that all samples were derived from a single breeding population of krill. The results of this study agree closely with genetic data from other studies on krill in the Atlantic sector of the Southern Ocean, suggesting that krill stocks over at least 6000 km of Antarctic waters are derived from a single interbreeding population.  相似文献   

15.
16.
Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean   总被引:2,自引:1,他引:1  
Summary Development of a comprehensive picture of the genetic population structure of the Antarctic krill (Euphausia superba) has been hampered by a lack of genetic data from two major areas of the species' distribution, the Bellingshausen Sea and the Ross Sea. Evidence from earlier studies of a discrete Bellingshausen Sea population was based on anomalous allele frequencies in two sample sets that were collected near the west coast of the Antarctic Peninsula rather than in the Bellingshausen Sea proper. In this paper we describe the first biochemical genetic data obtained on krill from the central Bellingshausen Sea and from the Ross Sea. Analyses of eight polymorphic loci in samples from these two areas have failed to provide any evidence of population structuring within the Pacific sector of the Southern Ocean, and have indicated that Pacific sector krill cannot be genetically discriminated from Atlantic sector krill or Indian Ocean sector krill. These findings further support the hypothesis of a single circumpolar breeding population of Antarctic krill.  相似文献   

17.
Here, we present an adaptation of restriction‐site‐associated DNA sequencing (RAD‐seq) to the Illumina HiSeq2000 technology that we used to produce SNP markers in very large quantities at low cost per unit in the Réunion grey white‐eye (Zosterops borbonicus), a nonmodel passerine bird species with no reference genome. We sequenced a set of six pools of 18–25 individuals using a single sequencing lane. This allowed us to build around 600 000 contigs, among which at least 386 000 could be mapped to the zebra finch (Taeniopygia guttata) genome. This yielded more than 80 000 SNPs that could be mapped unambiguously and are evenly distributed across the genome. Thus, our approach provides a good illustration of the high potential of paired‐end RAD sequencing of pooled DNA samples combined with comparative assembly to the zebra finch genome to build large contigs and characterize vast numbers of informative SNPs in nonmodel passerine bird species in a very efficient and cost‐effective way.  相似文献   

18.
The small brown planthopper (SBPH), Laodelphax striatellus, is one of the most destructive agricultural pests that causes serious economic loss in the main rice‐producing areas of China. To clarify issues such as the genetic differentiation, gene flow and population genetic structure of SBPH populations, we investigated the genetic diversity, genetic structure and phylogeography of 27 SBPH populations at 23 sampling sites from three climatic zones of China using specific‐locus amplified fragment sequencing (SLAF‐seq) for large‐scale single nucleotide polymorphism (SNP) detection. In total, 115.95 M reads, 56,355 polymorphic specific‐locus amplified fragments were developed, and 32,556 reliable single nucleotides (SNPs) were detected. The results indicated that the genotypes of many polymorphism sites had low heterozygosity in every population. Overall, the pairwise FST values between the populations varied from 0.056 to 0.092; it suggested the lack of strong differentiation among three climatic zone groups, respectively. It also suggested a strong level of gene flow (Nm) among populations in different climate zones, ranging from 28.864 to 35.197. Phylogenetic analyses, principal component analysis (PCA), Bayesian clustering method and AMOVA revealed that there was no evidence genetic clustering in three main bioclimatic zones. Neutrality testing provided strong evidence for a recent rapid expansion without any recent genetic bottleneck in these populations. Accordingly, the results of the present study should be beneficial for SBPH management and provide insight into the genetics of SBPH.  相似文献   

19.
Minimally invasive sampling (MIS) is widespread in wildlife studies; however, its utility for massively parallel DNA sequencing (MPS) is limited. Poor sample quality and contamination by exogenous DNA can make MIS challenging to use with modern genotyping‐by‐sequencing approaches, which have been traditionally developed for high‐quality DNA sources. Given that MIS is often more appropriate in many contexts, there is a need to make such samples practical for harnessing MPS. Here, we test the ability for Genotyping‐in‐Thousands by sequencing (GT‐seq), a multiplex amplicon sequencing approach, to effectively genotype minimally invasive cloacal DNA samples collected from the Western Rattlesnake (Crotalus oreganus), a threatened species in British Columbia, Canada. As there was no previous genetic information for this species, an optimized panel of 362 SNPs was selected for use with GT‐seq from a de novo restriction site‐associated DNA sequencing (RADseq) assembly. Comparisons of genotypes generated within and among RADseq and GT‐seq for the same individuals found low rates of genotyping error (GT‐seq: 0.50%; RADseq: 0.80%) and discordance (2.57%), the latter likely due to the different genotype calling models employed. GT‐seq mean genotype discordance between blood and cloacal swab samples collected from the same individuals was also minimal (1.37%). Estimates of population diversity parameters were similar across GT‐seq and RADseq data sets, as were inferred patterns of population structure. Overall, GT‐seq can be effectively applied to low‐quality DNA samples, minimizing the inefficiencies presented by exogenous DNA typically found in minimally invasive samples and continuing the expansion of molecular ecology and conservation genetics in the genomics era.  相似文献   

20.
Inferring phylogenetic relationships between closely related taxa can be hindered by three factors: (1) the lack of informative molecular variation at short evolutionary timescale; (2) the lack of established markers in poorly studied taxa; and (3) the potential phylogenetic conflicts among different genomic regions due to incomplete lineage sorting or introgression. In this context, Restriction site Associated DNA sequencing (RAD‐seq) seems promising as this technique can generate sequence data from numerous DNA fragments scattered throughout the genome, from a large number of samples, and without preliminary knowledge on the taxa under study. However, divergence beyond the within‐species level will necessarily reduce the number of conserved and non‐duplicated restriction sites, and therefore the number of loci usable for phylogenetic inference. Here, we assess the suitability of RAD‐seq for phylogeny using a simulated experiment on the 12 Drosophila genomes, with divergence times ranging from 5 to 63 million years. These simulations show that RAD‐seq allows the recovery of the known Drosophila phylogeny with strong statistical support, even for relatively ancient nodes. Notably, this conclusion is robust to the potentially confounding effects of sequencing errors, heterozygosity, and low coverage. We further show that clustering RAD‐seq data using the BLASTN and SiLiX programs significantly improves the recovery of orthologous RAD loci compared with previously proposed approaches, especially for distantly related species. This study therefore validates the view that RAD sequencing is a powerful tool for phylogenetic inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号