首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Pitcher TE  Rodd FH  Rowe L 《Genetica》2008,134(1):137-146
Several studies suggest that females may offset the costs of genetic incompatibility by exercising pre-copulatory or post-copulatory mate choice to bias paternity toward more compatible males. One source of genetic incompatibility is the degree of relatedness among mates; unrelated males are expected to be genetically more compatible with a female than her relatives. To address this idea, we investigated the potential for inbreeding depression and paternity biasing mechanisms (pre- and post-copulatory) of inbreeding avoidance in the guppy, Poecilia reticulata. Inbreeding resulted in a reduction in offspring number and quality. Females mated to siblings gave birth to significantly fewer offspring compared to females mated to non-siblings and inbred male offspring took longer to reach sexual maturity. There was no evidence of inbreeding avoidance in pre-copulatory behaviors of females or males. Sexual responsiveness of females to courting males and the number of sexual behaviors males directed at females did not decrease as a function of the relatedness of the two individuals. We also tested whether female guppies can use post-copulatory mechanisms to bias sperm usage toward unrelated males by comparing the number of offspring produced by females mated to two of their siblings (SS), two males unrelated to the female (NN), or to one unrelated male and a sibling male (NS). We found that NS females produced a number of offspring not significantly different than what would be expected if fertilization success were halfway between completely outbreeding (NN) and completely inbreeding (SS) females. This suggests that there is no significant improvement in the number of offspring produced by females mating to both related and unrelated males, relative to that which would be expected if sperm from both males were used equally. Our results suggest that female guppies do not discriminate against closely related males or their sperm.  相似文献   

2.
The mating system of a species can have great effects on its genetic structure and evolution. We studied the extent of multiple paternity in a gastropod with internal fertilization, the intertidal snail Littorina saxatilis. Paternal genotype reconstruction based on microsatellite markers was performed on the offspring of wild, naturally fertilized females from 2 populations. The numbers of males contributing to the offspring per female were among the highest detected in invertebrates so far, with the exception of social insects. No reproductive skew in favor of males that were genetically more distant from the females was detected, and the pattern of fertilization appeared random. The result fits a hypothesis of indiscriminate mating, with genetic bet hedging as the most likely explanation. Bet hedging may have evolved as a form of inbreeding avoidance, if the snails are not able to recognize relatives. However, nutritional benefits from sperm or sexual conflict with males are additional possibilities that remain to be assessed in this species. Whatever the causes, such high levels of multiple paternity are remarkable and are likely to have a large impact on population structure and dynamics in a species in which migration between populations is spurious.  相似文献   

3.
Sex-allocation theory predicts that females should preferentially produce offspring of the sex with greater fitness potential. In socially monogamous animal species, extra-pair mating often increases the variance in fitness of sons relative to daughters. Thus, in situations where offspring sired by a female''s extra-pair mate(s) will typically have greater fitness potential than offspring sired by the within-pair mate, sex-allocation theory predicts that females will bias the sex of offspring sired by extra-pair mates towards male. We examined the relationship between offspring sex and paternity over six breeding seasons in an Illinois population of the house wren (Troglodytes aedon), a cavity-nesting songbird. Out of the 2345 nestlings that had both sex and paternity assigned, 350 (15%) were sired by extra-pair males. The sex ratio of extra-pair offspring, 0.534, was significantly greater than the sex ratio of within-pair offspring, 0.492, representing an increase of 8.5 per cent in the proportion of sons produced. To our knowledge, this is the first confirmed report of female birds increasing their production of sons in association with extra-pair fertilization. Our results are consistent with the oft-mentioned hypothesis that females engage in extra-pair mating to increase offspring quality.  相似文献   

4.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

5.
Inbreeding is known to have adverse effects on fitness-related traits in a range of insect species. A series of theoretical and experimental studies have suggested that polyandrous insects could avoid the cost of inbreeding via pre-copulatory mate choice and/or post-copulatory mechanisms. We looked for evidence of pre-copulatory inbreeding avoidance using female mate preference trials, in which females were given the choice of mating with either of two males, a sibling and a non-sibling. We also tested for evidence of post-copulatory inbreeding avoidance by conducting double mating experiments, in which four sibling females were mated with two males sequentially, either two siblings, two non-siblings or a sibling and a non-sibling in either order. We identified substantial inbreeding depression: offspring of females mated to full siblings had lower hatching success, slower development time from egg to adult, lower survival of larval and pupal stages, and lower adult body mass than the offspring of females mated to non-sibling males. We also found evidence of pre-copulatory inbreeding avoidance, as females preferred to mate with non-sibling males. However, we did not find any evidence of post-copulatory inbreeding avoidance: egg hatching success of females mating to both sibling and non-sibling males were consistent with sperm being used without bias in relation to mate relatedness. Our results suggest that this cabbage beetle has evolved a pre-copulatory mechanism to avoid matings between close relative, but that polyandry is apparently not an inbreeding avoidance mechanism in C. bowringi.  相似文献   

6.
Maintenance of genetic variation in the face of strong natural selection is a long‐standing problem in evolutionary biology. One of the most extreme examples of within‐population variation is the polymorphic, genetically determined color pattern of male Trinidad guppies (Poecilia reticulata). Female mating preference for rare or novel patterns has been implicated as a factor in maintaining this variation. The origin of this preference is not understood, although inbreeding avoidance has been proposed as a mechanism. Inbreeding avoidance is advantageous when populations exhibit inbreeding depression and the opportunity for mating between relatives exists. To determine whether these conditions are met in a natural guppy population, we assessed mating and reproductive patterns using polymorphic molecular markers. Females produced more offspring with less‐related males than with more‐related ones. In addition, females were more likely to have mated with less‐related males, but this trend was only marginally significant. Male heterozygosity was positively correlated with mating success and with the number of offspring sired, consistent with strong inbreeding depression for adult male fitness. These results provide substantial insight into mating patterns of a wild guppy population: strong inbreeding depression occurs, and individuals tend to avoid mating with relatives.  相似文献   

7.
Despite the importance of polyandry for sexual selection, the reasons why females frequently mate with several males remain poorly understood. A number of genetic benefits have been proposed, based on the idea that by taking multiple mates, females increase the likelihood that their offspring will be sired by genetically more compatible or superior males. If certain males have intrinsically “good genes,” any female mating with them will produce superior offspring. Alternatively, if some males have genetic elements that are incompatible with a particular female, then she may benefit from polyandry if the sperm of such males are less likely to fertilize her eggs. We examined these hypotheses in the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae). By allocating females identical numbers of matings but different numbers of mates we investigated the influence of number of mates on female fecundity, and both short- and long-term offspring fitness. This revealed no effect of number of mates on number of eggs laid. However, hatching success of eggs increased with number of mates. This effect could not be attributed to nongenetic effects such as the possibility that polyandry reduces variance in the quantity or fertilizing ability of sperm females receive, because a control group receiving half the number of copulations showed no drop in hatching success. Offspring did not differ in survival, adult mass, size, or development time with treatment. When males were mated to several different females there were no repeatable differences between individual males in the hatching success of their mate's eggs. This suggests that improved hatching success of polyandrous females is not due to certain males having genes that improve egg viability regardless of their mate. Instead, our results support the hypothesis that certain males are genetically more compatible with certain females, and that this drives polyandry through differential fertilization success of sperm from more compatible males.  相似文献   

8.
Omkar    Uzma Afaq 《Insect Science》2013,20(4):531-540
In the Parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae), variation in body size exists between and within the sexes. The females are larger than the males. Darwin (1874) proposed the fecundity advantage hypothesis, that is, large‐sized females produce more progeny, with subsequent studies supporting, as well as, refuting the hypothesis. Thus, in order to evaluate whether this hypothesis stands in Z. bicolorata we performed experiments to investigate the role of body size in influencing: (i) assortative mating; (ii) reproductive attributes; and (iii) growth, development and survival of offspring. It is the first attempt in this beetle. We found that size influenced assortative mating, reproductive output and offspring fitness. Larger males and females were preferred as mates over smaller ones. The pairs, having larger adults as mates, had higher fecundity, while the egg viability was influenced by the male size only. The offspring of larger parents had fast development and higher survival, indicating thereby possible better nutrient allotment by the female and supply of accessory gland proteins by the male in addition to better quality of genes.  相似文献   

9.
10.
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females.  相似文献   

11.
Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex‐biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free‐ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free‐ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability.  相似文献   

12.
There is a clear tendency in nature for males to compete more strongly for fertilizations than females, yet the ultimate reasons for this are still unclear. Many researchers—dating back to Darwin and Bateman—have argued that the difference is ultimately driven by the fact that males (by definition) produce smaller and more numerous gametes than females. However, this view has recently been challenged, and a formal validation of the link between anisogamy and sex roles has been lacking. Here, we develop mathematical models that validate the intuition of Darwin and Bateman, showing that there is a very simple and general reason why unequal gamete numbers result in unequal investment in sexually competitive traits. This asymmetry does not require multiple mating by either sex, and covers traits such as mate searching, where the male bias has been difficult to explain. Furthermore, our models show males and females are predicted to diverge more strongly when the fertilization probability of each female gamete is high. Sex roles thus ultimately trace back to anisogamy and the resulting consequences for the fertilization process.  相似文献   

13.
The vast majority of bird species are socially monogamous; however, extra‐pair paternity is nearly ubiquitous and a number of theories have been proposed to explain the prevalence of this mixed mating strategy. Here, we test the genetic compatibility hypothesis – the idea that females seek extra‐pair copulations with males whose genes are more compatible with her own. For this study, we examined eight years of paternity data (2004–2011) from a Nearctic‐Neotropical migratory bird, the American redstart Setophaga ruticilla, breeding in southeastern Ontario, Canada. We predicted that females paired with genetically similar males (higher relatedness) would be more likely to produce extra‐pair offspring and that extra‐pair offspring would have higher levels of heterozygosity than within‐pair offspring. Alternatively, because this population experiences high levels of immigration, females may produce extra‐pair offspring with more genetically similar males because of the potential for outbreeding depression. Using five highly variable microsatellite markers, we examined patterns of relatedness among social pairs as well as measures of offspring heterozygosity. In contrast to our predictions, we found no difference in relatedness between social pairs where the females produced extra‐pair offspring and social pairs where the females produced only within‐pair offspring. However, extra‐pair offspring were significantly less heterozygous than within‐pair offspring. Together, these findings suggest that females a) are not engaging in extra‐pair fertilizations based on relatedness to their social mate and b) appear to be mating with extra‐pair males that are more genetically similar to themselves. We suggest there may be benefits for females to mate with genetically similar extra‐pair males in highly outbred populations with high rates of immigration, such as for maintaining co‐adapted gene complexes or genes coding for local adaptations.  相似文献   

14.
An increasing number of studies test the idea that females increase offspring fitness by biasing fertilization in favour of genetically compatible partners; however, few have investigated or controlled for corresponding preferences in males. Here, we experimentally test whether male red junglefowl, Gallus gallus, prefer genetically compatible females, measured by similarity at the major histocompatibility complex (MHC), a key gene complex in vertebrate immune function. Theory predicts that because some degree of MHC heterozygosity favours viability, individuals should prefer partners that carry MHC alleles different from their own. While male fowl showed no preference when simultaneously presented with an MHC-similar and an MHC-dissimilar female, they showed a ‘cryptic’ preference, by allocating more sperm to the most MHC-dissimilar of two sequentially presented females. These results provide the first experimental evidence that males might respond to the MHC similarity of a female through differential ejaculate expenditure. By revealing that cryptic male behaviours may bias fertilization success in favour of genetically compatible partners, this study demonstrates the need to experimentally disentangle male and female effects when studying preferences for genetically compatible partners.  相似文献   

15.
Recent evidence shows that females exert a post‐copulatory fertilization bias in favour of unrelated males to avoid the genetic incompatibilities derived from inbreeding. One of the mechanisms suggested for fertilization biases in insects is female control over transport of sperm to the sperm‐storage organs. We investigated post‐copulatory inbreeding‐avoidance mechanisms in females of the cricket Teleogryllus oceanicus. We assessed the relative contribution of related and unrelated males to the sperm stores of double‐mated females. To demonstrate unequivocally that biased sperm storage results from female control rather than cryptic male choice, we manipulated the relatedness of mated males and of males performing post‐copulatory mate guarding. Our results show that when guarded by a related male, females store less sperm from their actual mate, irrespective of the relatedness of the mating male. Our data support the notion that inhibition of sperm storage by female crickets can act as a form of cryptic female choice to avoid the severe negative effects of inbreeding.  相似文献   

16.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

17.
The significance of female choice in shaping mating systems remains problematic. The following study clearly documents female preferences in a species of grasshopper,Schistocerca americana, over the course of 3 years. Three sets of animals were observed in an outdoor seminatural cage. Females were found to mate more often with large, heavy males. Furthermore, remating by a female within a week was less likely if she mated with a large or heavy male. Because females were found to oviposit 2 days after a mating on average, these large heavy males may also be chosen cryptically (as defined in the literature) and father more offspring.  相似文献   

18.
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.  相似文献   

19.
Although classically thought to be rare, female polyandry is widespread and may entail significant fitness benefits. If females store sperm over extended periods of time, the consequences of polyandry will depend on the pattern of sperm storage, and some of the potential benefits of polyandry can only be realized if sperm from different males is mixed. Our study aimed to determine patterns and consequences of polyandry in an amphibian species, the fire salamander, under fully natural conditions. Fire salamanders are ideal study objects, because mating, fertilization and larval deposition are temporally decoupled, females store sperm for several months, and larvae are deposited in the order of fertilization. Based on 18 microsatellite loci, we conducted paternity analysis of 24 female‐offspring arrays with, in total, over 600 larvae fertilized under complete natural conditions. More than one‐third of females were polyandrous and up to four males were found as sires. Our data clearly show that sperm from multiple males is mixed in the female's spermatheca. Nevertheless, paternity is biased, and the most successful male sires on average 70% of the larvae, suggesting a ‘topping off’ mechanism with first‐male precedence. Female reproductive success increased with the number of sires, most probably because multiple mating ensured high fertilization success. In contrast, offspring number was unaffected by female condition and genetic characteristics, but surprisingly, it increased with the degree of genetic relatedness between females and their sires. Sires of polyandrous females tended to be genetically similar to each other, indicating a role for active female choice.  相似文献   

20.
When there is a temporal trade‐off between mating effort and parental care, theoretical models predict that intense sexual selection on males leads to reduced paternal care. Thus, high‐quality males should invest more in mating effort because they have higher chances of acquiring mates, whereas low‐quality males should bias their investment towards parental care. Once paternal care has evolved, offspring value should also influence males’ decisions to invest in offspring attendance. Here, we performed a manipulation under field conditions to investigate the factors that influence male allocation in either mating effort or parental care. We predicted that facultative paternal care in the harem‐holding harvestman Serracutisoma proximum would be negatively influenced by male attractiveness and positively influenced by offspring value. We found that attractive males were less likely to engage in egg attendance and that the higher the perceived paternity, the higher the caring frequency. Finally, egg mortality was not related to caring frequency by males, but predation pressure was much lower than that recorded in previous studies with the same population. Thus, the benefits of facultative male care may be conditional to temporal variation in the intensity of egg predation. In conclusion, males adjust their investment in either territory defence or egg attendance according to their recent mating history and perceived paternity. Our findings suggest that exclusive paternal care can evolve from facultative paternal care only if the trade‐off between mating effort and parental care is circumvented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号