首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acyl‐CoA and acyl‐acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram‐negative bacteria. However, Gram‐positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn‐glycerol‐3‐phosphate by PlsY using an acyl‐phosphate (acyl‐PO4) intermediate. PlsX generates acyl‐PO4 from the acyl‐ACP end‐products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1‐position and endogenous acyl groups were channeled into the 2‐position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl‐ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP‐dependent fatty acid kinase activity, and the acyl‐PO4 was converted to acyl‐ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.  相似文献   

2.
In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signalling factor (DSF, 2(Z)‐11‐methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl‐CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl‐CoA ligase, Escherichia coli FadD, in the E. coli ß‐oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3‐hydroxyacyl‐acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl‐ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalysing uptake and activation of the free fatty acids to give acyl‐CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl‐ACP synthetase, replaced RpfB in counteracting the effects of high level RpfF thioesterase activity indicating that the essential role of RpfB is uptake and activation of free fatty acids.  相似文献   

3.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

4.
The Firmicute bacteria readily incorporate exogenous fatty acids into their phospholipids. In some (but not all) family members incorporation of the fatty acids present in human serum precludes the use of fatty acid synthesis inhibitors to treat infections. However, the pathway(s) of exogenous fatty acid incorporation in these bacteria remained unknown, although it was thought to differ from known pathways. Parsons and co‐workers show that in Staphylococcus aureus exogenous fatty acids are activated by phosphoryl transfer from ATP to form acyl‐phosphates, a mixed anhydride suggested as a potential intermediate 70 years ago. This finding has important ramifications for the efficacy of treatment of S. aureus infections using inhibitors of fatty acid synthesis.  相似文献   

5.
The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short‐chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium‐chain length fatty acids via three basic modifications: elimination of β‐oxidation, overexpression of the four subunits of acetyl‐CoA carboxylase, and expression of a plant acyl–acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven‐fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking β‐oxidation), with a composition dominated by C12 and C14 saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C12 fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L?1 (culture volume) undecane. Biotechnol. Bioeng. 2010;106: 193–202. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
The role of acyl‐CoA‐dependent Δ6‐desaturation in the heterologous synthesis of omega‐3 long‐chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl‐CoA Δ6‐desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6‐desaturated acyl‐CoAs, in contrast to the phospholipid‐dependent Δ6‐desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl‐CoA Δ6‐desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid‐dependent Δ6‐desaturase. The use of acyl‐CoA‐dependent Δ6‐desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ‐linolenic acid in total seed lipids. Expression of acyl‐CoA Δ6‐desaturases resulted in increased distribution of long‐chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6‐desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6‐desaturated fatty acids. This study provides evidence for the efficacy of using acyl‐CoA‐dependent Δ6‐desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega‐3 LC‐PUFAs.  相似文献   

7.
P Jiang  J E Cronan  Jr 《Journal of bacteriology》1994,176(10):2814-2821
The effects of inhibition of Escherichia coli phospholipid synthesis on the accumulation of intermediates of the fatty acid synthetic pathway have been previously investigated with conflicting results. We report construction of an E. coli strain that allows valid [14C]acetate labeling of fatty acids under these conditions. In this strain, acetate is a specific precursor of fatty acid synthesis and the intracellular acetate pools are not altered by blockage of phospholipid synthesis. By use of this strain, we show that significant pools of fatty acid synthetic intermediates and free fatty acids accumulate during inhibition of phospholipid synthesis and that the rate of synthesis of these intermediates is 10 to 20% of the rate at which fatty acids are synthesized during normal growth. Free fatty acids of abnormal chain length (e.g., cis-13-eicosenoic acid) were found to accumulate in glycerol-starved cultures. Analysis of extracts of [35S]methionine-labeled cells showed that glycerol starvation resulted in the accumulation of several long-chain acyl-acyl carrier protein (ACP) species, with the major species being ACP acylated with cis-13-eicosenoic acid. Upon the restoration of phospholipid biosynthesis, the abnormally long-chain acyl-ACPs decreased, consistent with transfer of the acyl groups to phospholipid. The introduction of multicopy plasmids that greatly overproduced either E. coli thioesterase I or E. coli thioesterase II fully relieved the inhibition of fatty acid synthesis seen upon glycerol starvation, whereas overexpression of ACP had no effect. Thioesterase I overproduction also resulted in disappearance of the long-chain acyl-ACP species. The release of inhibition by thiosterase overproduction, together with the correlation between the inhibition of fatty acid synthesis and the presence of abnormally long-chain acyl-ACPs, suggests with that these acyl-ACP species may act as feedback inhibitors of a key fatty acid synthetic enzyme(s).  相似文献   

8.
To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinaciaoleracea L.) leaves, rape (Brassicanapus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction. Received: 23 June 1997 / Accepted: 23 October 1997  相似文献   

9.
Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2 g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively.  相似文献   

10.
金黄色葡萄球菌引起的危害是目前我国微生物安全的重要问题之一。金黄色葡萄球菌通过脂肪酸生物合成磷脂酸(磷脂合成必需中间体)合成细胞膜磷脂以完成自身繁殖。因此,抑制菌体磷脂酸合成可有效防控金黄色葡萄球菌对环境及生物体造成危害。然而,金黄色葡萄球菌可经II型脂肪酸合成(type II fatty acid synthesis, FASII)通路和旁路两条途径合成磷脂酸,常规抑菌剂仅靶向抑制FASII通路,可能导致菌体在富含外源脂肪酸条件下出现“旁路逃逸”,形成防控漏洞。为此,本文系统总结金黄色葡萄球菌基于FASII通路和旁路合成细胞磷脂酸及磷脂酸向其他磷脂类物质转化的信号传导过程,讨论抑菌物质靶向抑制上述信号传导过程中可能的关键靶点,为新型抑菌剂开发提供理论指导。  相似文献   

11.
The functional characterization of wax biosynthetic enzymes in transgenic plants has opened the possibility of producing tailored wax esters (WEs) in the seeds of a suitable host crop. In this study, in addition to systematically evaluating a panel of WE biosynthetic activities, we have also modulated the acyl‐CoA substrate pool, through the co‐expression of acyl‐ACP thioesterases, to direct the accumulation of medium‐chain fatty acids. Using this combinatorial approach, we determined the additive contribution of both the varied acyl‐CoA pool and biosynthetic enzyme substrate specificity to the accumulation of non‐native WEs in the seeds of transgenic Camelina plants. A total of fourteen constructs were prepared containing selected FAR and WS genes in combination with an acyl‐ACP thioesterase. All enzyme combinations led to the successful production of wax esters, of differing compositions. The impact of acyl‐CoA thioesterase expression on wax ester accumulation varied depending on the substrate specificity of the WS. Hence, co‐expression of acyl‐ACP thioesterases with Marinobacter hydrocarbonoclasticus WS and Marinobacter aquaeolei FAR resulted in the production of WEs with reduced chain lengths, whereas the co‐expression of the same acyl‐ACP thioesterases in combination with Mus musculus WS and M. aquaeolei FAR had little impact on the overall final wax composition. This was despite substantial remodelling of the acyl‐CoA pool, suggesting that these substrates were not efficiently incorporated into WEs. These results indicate that modification of the substrate pool requires careful selection of the WS and FAR activities for the successful high accumulation of these novel wax ester species in Camelina seeds.  相似文献   

12.
13.
Biofuel from fatty acids with chain lengths of 8–15 (C8–C15) have properties similar to those of conventional diesel and jet fuels, thus, can save time and reduce costs for the refurbishment of engines and maintenance of oiling facilities. Most oil‐producing algae yield C16–C18 fatty acids; however, the manipulation of algae using genetic engineering is a promising approach to obtain C8–C15 fatty acids. The introduction of a medium‐chain‐specific thioesterase (TE) is expected to effectively alter algae to produce medium‐chain fatty acids (MCFAs). TE is the main determinant of fatty acid chain length as it releases fatty acids from the acyl carrier protein (ACP) in the fatty acid elongation cycle. In a previous study, the introduction of heterologous C8–C12‐specific TEs into Chlamydomonas reinhardtii did not increase the yield of MCFAs. This effect was attributed to a low affinity of the heterologous TEs to C. reinhardtii ACP. Therefore, we introduced both the C10–C14‐specific TE gene and the ACP gene from the land plant Cuphea lanceolata into C. reinhardtii. We measured free fatty acids (FFAs) and triacylglycerols (TAGs) in the transformants using liquid chromatography–mass spectrometry. The production of C12:0 and C14:0, chain length 12 and 14 without unsaturation, FFAs was not significantly increased in any of the tested strains. However, we found a slight but significant increase in TAG‐containing MCFAs in both TE only and TE–ACP transformants. The increased production rate of C14:0‐containing TAGs ranged from 1.25‐ to 1.58‐fold, indicating the ability of medium‐chain‐specific TE to increase MCFAs. These results suggest that the selection of specific TEs is important when modifying eukaryotic algae to produce MCFAs.  相似文献   

14.
We have examined production of mediumchain fatty acids by Brassica napus L. plants transformed with a California bay (Umbellularia californica) medium-chain acyl-acyl carrier protein (ACP) thioesterase (UcFatB1) cDNA under the control of the constitutive cauliflower mosaic virus 35S promoter. These plants were found to accumulate medium-chain fatty acids in seeds but not in leaves or roots. Assay of thioesterase activity in extracts of leaves indicated that lauroyl-ACP thioesterase activity is comparable to oleoyl-ACP thioesterase (EC 3.1.2.14) activity in transformant leaves. Furthermore, leaf lauroyl-ACP thioesterase activity was in excess of that which produced a significant increase in the amount of laurate (12:0) in seed. Studies in which isolated chloroplasts were 14C-labelled were used to evaluate whether medium-chain fatty acids were produced in transformed leaves. Up to 34% of the fatty acids synthesized in vitro by isolated chloroplasts were 12:0. These results demonstrate that the normally seed-localized lauroyl-ACP thioesterase can be expressed in active form in leaves, imported into chloroplasts and can access acyl-ACP intermediates of leaf de-novo fatty acid synthesis. The most likely explanation for the lack of accumulation of 12:0 in transformed leaves is its rapid degradation by -oxidation. In support of this hypothesis, isocitrate lyase (EC 4.1.3.1) activity was found to be significantly increased in plants transformed with 35S-UcFatB1.Abbreviations ACP acyl carrier protein - CaMV cauliflower mosaic virus - control Brassica napus cultivar 212/86 - event 8 pCGN3831-212/86-8 - event 11 pCGN3831-212/86-11 - FAS fatty acid synthase - IL isocitrate lyase - KAS -keto-acyl ACP synthase - MS malate synthase - OTE oleoyl-ACP thioesterase - TAG triacylglycerol - UcFatB1 California bay medium-chain acyl-ACP thioesterase We are indebted to Calgene's Brossica-transformation, growth-chamber, greenhouse, and lipid-analysis personnel. Maelor Davies conducted the initial tranformant analysis. We thank Laura Olsen for IL and MS Western blot analysis and advice on IL and MS activity assays. This work was supported in part by a grant from the U.S. Department of Energy (No. DE-FG02-87ER12729). Acknowledgement is made to the Michigan Agricultural Experiment Station for its support of this research.  相似文献   

15.
Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end‐use applications. However, the hydrogenation process leads to the formation of trans‐fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl‐ACP thioesterase into soybean and the subsequent stacking with an event that is dual‐silenced in palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase expression in a seed‐specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl‐ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%–19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%–40%, while the stearic level remained elevated.  相似文献   

16.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

17.
Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.  相似文献   

18.
Bacillus subtilis synthesizes, almost exclusively, saturated fatty acids, when grown at 37° C. When cultures were transferred from 37° C to 20° C, a chloramphenicol- and rifampicin-sensitive synthesis of a C-16 unsaturated fatty acid was observed. Synthesis of this compound reached a plateau after 5 h at 20° C, reaching levels of 20% of the total fatty acid content. [14C]-labelled fatty acids attached as thioesters to acyl-carriers compounds, such as coenzyme A (CoA) or acyl-carrier protein (ACP) synthesized de novo by glycerol-requiring auxotrophs deprived of glycerol to arrest phospholipid synthesis, could not be desaturated at 20° C. Desaturation of these fatty acids was readily observed when glycerol was restored to the cultures allowing resumption of transfer of acyl-moieties from acyl-thioesters to phospholipid. It was also observed that depletion of the pools of CoA and ACP by starvation of pantothenate auxotrophs had no effect on the observed synthesis of unsaturated fatty acid at 20° C. The overall results indicate that synthesis of unsaturated fatty acids in B. subtilis is a cold-inducible process and that phospholipids are obligate intermediates in this fatty acid desaturation pathway.  相似文献   

19.
Tetrahymena setosa has a nutritional requirement for micro amounts of sterol, a requirement which is also satisfied by relatively large amounts of either intact phospholipids or a mixture of unsaturated fatty acids normally found in these ciliates. Three microsomal fatty acyl-CoA desaturases have been isolated from T. setosa and partially characterized. These enzymes which can account for the formation of the majority of the ciliate's unsaturated fatty acids, include: a Δ9, a Δ12 and a Δ6 desaturase which catalyze the transformation of stearoyl-CoA to oleic acid, of oleoyl-CoA to linoleic acid and of linoleoyl-CoA to ?-linolenic acid, respectively. The stearoyl CoA desaturase required NAD (or NADP), ATP and free CoA; the Δ6 and Δ12 desaturases required NADP, but not ATP or CoA. Cellular levels of the three desaturases were highest in mid-logarithmic phase cells and lowest in stationary phase cells. In order to determine if there was a relationship between the sterol requirement and the ability of the organism to desaturate, T. setosa was grown in a synthetic medium supplemented with either cholesterol or a phospholipid which permits growth in the absence of cholesterol, or with both phospholipid and cholesterol. Cells grown with phospholipid alone had only half as much stearoyl-CoA and oleoyl-CoA desaturase activity as cells of identical culture age grown either on cholesterol alone or on cholesterol plus phospholipid.  相似文献   

20.
Joyard J  Stumpf PK 《Plant physiology》1980,65(6):1039-1043
The enzymic hydrolysis of acyl-coenzyme A occurs in intact and purified chloroplasts. The different components of spinach chloroplasts were separated after a slight osmotic shock and the purified envelope membranes were shown to be the site of very active acyl-CoA thioesterase activity (EC 3.1.2.2.). The enzyme, which had a pH optimum of 9.0, was not affected by sulfhydryl reagents or by serine esterase inhibitors. However, the acyl-CoA thioesterase was strongly inhibited by unsaturated fatty acids, especially oleic acid, at concentrations above 100 micromolar. In marked contrast, saturated fatty acids had only a slight effect on the thioesterase activity. Substrate specificities showed that the velocity of the reaction increased with the chain length of the substrate from decanoyl-CoA to myristoyl-CoA and then decreased with the chain length from myristoyl-CoA to stearoyl-CoA. Interestingly, oleoyl-CoA was only slowly hydrolyzed. These results suggest that the envelope acyl-CoA thioesterase coupled with an envelope acyl-CoA synthetase may be involved in a switching system which indirectly allows acyl transfer from acyl carrier protein derivatives to unsaturated acyl-CoA derivatives and ensures the predominance of unsaturated 18 carbon fatty acids in plants. Furthermore, the position of both acyl-CoA thioesterase and synthetase in the envelope membranes suggest that these two enzymes may be involved in the transport of oleic acid from the stroma phase to the cytosol compartment of the leaf cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号