共查询到20条相似文献,搜索用时 15 毫秒
1.
Catherine E. Grueber Jolene T. Sutton Sol Heber James V. Briskie Bruce C. Robertson 《Molecular ecology》2017,26(10):2660-2673
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome‐wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll‐like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred. 相似文献
2.
Trent Santonastaso Jackie Lighten Cock van Oosterhout Kenneth L. Jones Johannes Foufopoulos Nicola M. Anthony 《Ecology and evolution》2017,7(13):4568-4581
The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii. Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation‐drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity. 相似文献
3.
D. L. Gilroy K. P. Phillips D. S. Richardson C. van Oosterhout 《Journal of evolutionary biology》2017,30(7):1276-1287
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll‐like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent‐based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the ‘ghost of selection past’. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such ‘drift debt’ occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations. 相似文献
4.
Alexandra L. DeCandia Kristin E. Brzeski Elizabeth Heppenheimer Catherine V. Caro Glauco Camenisch Peter Wandeler Carlos Driscoll Bridgett M. vonHoldt 《Ecology and evolution》2019,9(4):2046-2060
Urbanization is driving environmental change on a global scale, creating novel environments for wildlife to colonize. Through a combination of stochastic and selective processes, urbanization is also driving evolutionary change. For instance, difficulty in traversing human‐modified landscapes may isolate newly established populations from rural sources, while novel selective pressures, such as altered disease risk, toxicant exposure, and light pollution, may further diverge populations through local adaptation. Assessing the evolutionary consequences of urban colonization and the processes underlying them is a principle aim of urban evolutionary ecology. In the present study, we revisited the genetic effects of urbanization on red foxes (Vulpes vulpes) that colonized Zurich, Switzerland. Through use of genome‐wide single nucleotide polymorphisms and microsatellite markers linked to the major histocompatibility complex (MHC), we expanded upon a previous neutral microsatellite study to assess population structure, characterize patterns of genetic diversity, and detect outliers associated with urbanization. Our results indicated the presence of one large evolutionary cluster, with substructure evident between geographic sampling areas. In urban foxes, we observed patterns of neutral and functional diversity consistent with founder events and reported increased differentiation between populations separated by natural and anthropogenic barriers. We additionally reported evidence of selection acting on MHC‐linked markers and identified outlier loci with putative gene functions related to energy metabolism, behavior, and immunity. We concluded that demographic processes primarily drove patterns of diversity, with outlier tests providing preliminary evidence of possible urban adaptation. This study contributes to our overall understanding of urban colonization ecology and emphasizes the value of combining datasets when examining evolutionary change in an increasingly urban world. 相似文献
5.
Zachary W. Bateson Susan C. Hammerly Jeff A. Johnson Michael E. Morrow Linda A. Whittingham Peter O. Dunn 《Molecular ecology》2016,25(19):4730-4744
The negative effects of inbreeding on fitness are serious concerns for populations of endangered species. Reduced fitness has been associated with lower genome‐wide heterozygosity and immune gene diversity in the wild; however, it is rare that both types of genetic measures are included in the same study. Thus, it is often unclear whether the variation in fitness is due to the general effects of inbreeding, immunity‐related genes or both. Here, we tested whether genome‐wide heterozygosity (20 990 SNPs) and diversity at nine immune genes were better predictors of two measures of fitness (immune response and survival) in the endangered Attwater's prairie‐chicken (Tympanuchus cupido attwateri). We found that postrelease survival of captive‐bred birds was related to alleles of the innate (Toll‐like receptors, TLRs) and adaptive (major histocompatibility complex, MHC) immune systems, but not to genome‐wide heterozygosity. Likewise, we found that the immune response at the time of release was related to TLR and MHC alleles, and not to genome‐wide heterozygosity. Overall, this study demonstrates that immune genes may serve as important genetic markers when monitoring fitness in inbred populations and that in some populations specific functional genes may be better predictors of fitness than genome‐wide heterozygosity. 相似文献
6.
Eimes JA Bollmer JL Whittingham LA Johnson JA VAN Oosterhout C Dunn PO 《Journal of evolutionary biology》2011,24(9):1847-1856
Population bottlenecks may reduce genetic variation and potentially increase the risk of extinction. Here, we present the first study to use historic samples to analyse loss of variation at the major histocompatibility complex (MHC), which plays a central role in vertebrate disease resistance. Balancing selection acts on the MHC and could moderate the loss of variation expected from drift; however, in a Wisconsin population of greater prairie-chickens (Tympanuchus cupido), the number of MHC class II B alleles per individual declined by 44% following a population bottleneck, compared to a loss of only 8% at microsatellites. Simulations indicate that drift likely reduced MHC variation at the population level, as well as within individuals by reducing the number of gene copies per individual or by fixing the same alleles across multiple loci. These multiple effects of genetic drift on MHC variation could have important implications for immunity and fitness. 相似文献
7.
Adriana R. Mantegazza Joao G. Magalhaes Sebastian Amigorena Michael S. Marks 《Traffic (Copenhagen, Denmark)》2013,14(2):135-152
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen‐specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross‐presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells. 相似文献
8.
The major histocompatibility complex (MHC) is one of the most diverse regions of the mammalian genome. Diversity in MHC genes is integral to their function in the immune system, and while pathogens play a key role in shaping this diversity, the contribution of other selective forces remains unclear. The controlled breeding of cattle offers an excellent model for the identification and exploration of these forces. We characterized the MHC class I genes present in a sample of Canadian Holstein A.I. bulls and compared the results with those obtained in an earlier study. No evidence for a reduction in MHC diversity over 20 years was observed, but the relative frequency of some haplotypes had changed: the formerly rare A12 (w12B) haplotype had become the most common, together with A15, while A19, which dominated the earlier sample, had significantly reduced in frequency. Only 7% of bulls in the current study were MHC homozygous compared with the 14% expected under Hardy-Weinberg. To identify the selective forces at work, a gene substitution model was used to calculate the effects of MHC on selection traits using estimated breeding values for each bull. Significant associations between MHC and production, disease and fertility traits were identified, suggesting that MHC diversity is not merely shaped by disease in this controlled breeding system. The decrease in a common haplotype, the reduced number of homozygous bulls and the associations with disease and production traits together indicate that MHC diversity in dairy cattle is maintained by heterozygote advantage. 相似文献
9.
Joanna M. Setchell Elise Huchard 《BioEssays : news and reviews in molecular, cellular and developmental biology》2010,32(11):940-948
Major histocompatibility complex (MHC)‐associated mate choice is thought to give offspring a fitness advantage through disease resistance. Primates offer a unique opportunity to understand MHC‐associated mate choice within our own zoological order, while their social diversity provides an exceptional setting to examine the genetic determinants and consequences of mate choice in animal societies. Although mate choice is constrained by social context, increasing evidence shows that MHC‐dependent mate choice occurs across the order in a variety of socio‐sexual systems and favours mates with dissimilar, diverse or specific genotypes non‐exclusively. Recent research has also identified phenotypic indicators of MHC quality. Moreover, novel findings rehabilitate the importance of olfactory cues in signalling MHC genes and influencing primate mating decisions. These findings underline the importance to females of selecting a sexual partner of high genetic quality, as well as the generality of the role of MHC genes in sexual selection. 相似文献
10.
Laurel E. K. Serieys Amanda Lea John P. Pollinger Seth P. D. Riley Robert K. Wayne 《Evolutionary Applications》2015,8(1):75-92
Urbanization profoundly impacts animal populations by causing isolation, increased susceptibility to disease, and exposure to toxicants. Genetic effects include reduced effective population size, increased population substructure, and decreased adaptive potential. We investigated the influence that urbanization and a disease epizootic had on the population genetics of bobcats (Lynx rufus) distributed across a highly fragmented urban landscape. We genotyped more than 300 bobcats, sampled from 1996 to 2012, for variation at nine neutral and seven immune gene‐linked microsatellite loci. We found that two freeways are significant barriers to gene flow. Further, a 3‐year disease epizootic, associated with secondary anticoagulant rodenticide exposure, caused a population bottleneck that led to significant genetic differentiation between pre‐ and post‐disease populations that was greater than that between populations separated by major freeways for >60 years. However, balancing selection acted on immune‐linked loci during the epizootic, maintaining variation at functional regions. Conservation assessments need to assay loci that are potentially under selection to better preserve the adaptive potential of populations at the urban–wildland interface. Further, interconnected regions that contain appropriate habitat for wildlife will be critical to the long‐term viability of animal populations in urban landscapes. 相似文献
11.
David J. Wright Lewis G. Spurgin Nigel J. Collar Jan Komdeur Terry Burke David S. Richardson 《Molecular ecology》2014,23(9):2165-2177
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short‐ and long‐term persistence of populations and species. However, the relative spatio‐temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23‐year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. 相似文献
12.
The Tiburon Island population of desert bighorn sheep has increased in size from 20 founders in 1975 to approximately 650 in 1999. This population is now the only population being used as the source stock for transplantations throughout northern Mexico. To evaluate the genetic variation in this population, we examined 10 microsatellite loci and a major histocompatibility complex (MHC) locus. The genetic variation was significantly less than found in other populations of the same subspecies in Arizona. Using a model that takes into account the effects of genetic drift on genetic distance, most of the genetic distance observed between the Tiburon population and Arizona samples could be explained. Because of the low genetic variation found in the Tiburon population, it is suggested that the Tiburon population should be supplemented with additional unrelated animals or that the transplant populations should be supplemented with unrelated animals. 相似文献
13.
Hong‐Yi Liu Fei Xue Jie Gong Qiu‐Hong Wan Sheng‐Guo Fang 《Ecology and evolution》2017,7(23):9860-9868
Amphibians can be more vulnerable to environmental changes and diseases than other species because of their complex life cycle and physiological requirements. Therefore, understanding the adaptation of amphibians to environmental changes is crucial for their conservation. Major histocompatibility complex (MHC) presents an excellent tool for the investigation of adaptive variations and the assessment of adaptive potential because it can be under strong diversifying selection. Here, we isolated the MHC class II B (MHCIIB) gene from cDNA sequences of the black‐spotted frog (Pelophylax nigromaculatus), a widespread amphibian species in China, and designed locus‐specific primers to characterize adaptive variability of this amphibian. Ten alleles were identified from 67 individual frogs of three populations and no more than two alleles were present in each individual animal. Furthermore, none of the sequences had indels or/and stop codons, which is in good agreement with locus‐specific amplification of a functional gene. However, we found low polymorphism at both nucleotide and amino acid levels, even in the antigen‐binding region. Purifying selection acting at this locus was supported by the findings that the dN/dS ratio across all alleles was below 1 and that negatively selected sites were detected by different methods. Allele frequency distributions were significantly different among geographic populations, indicating that physiographic factors may have strong effect on the genetic structure of the black‐spotted frog. This study revealed limited polymorphism of three adjacent black‐spotted frog populations at the functional MHCIIB locus, which may be attributed to region‐specific differences. The locus‐specific genotyping technique developed in this study would provide a foundation for future studies on adaptive divergence among different frog populations. 相似文献
14.
Van Oosterhout C Joyce DA Cummings SM Blais J Barson NJ Ramnarine IW Mohammed RS Persad N Cable J 《Evolution; international journal of organic evolution》2006,60(12):2562-2574
Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne approximately 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s > or = 0.2) and lowland (s < or = 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift. 相似文献
15.
Lewis G. Spurgin 《Evolution; international journal of organic evolution》2013,67(10):3071-3072
Gohli et al. (2013) report a positive relationship between genetic diversity and promiscuity across passerine birds, and suggest that female promiscuity acts as a form of balancing selection, maintaining differences in genetic variation across species. This is an interesting hypothesis, but the enormous variation in genetic diversity present within species is not taken into account in their analyses. This, combined with a small sample size at several levels, makes the relationship between genetic diversity and promiscuity very difficult to interpret. Demonstrating that species‐level differences in genetic diversity (if they occur at all) are affected by promiscuity would require a far more comprehensive study than is presently possible. 相似文献
16.
Haidi Arbanasić Ana Galov Andreja Ambriović‐Ristov Juraj Grizelj Georgios Arsenos Božidarka Marković Toni Dovenski Silvijo Vince Ino Čurik 《Animal genetics》2013,44(6):711-716
The major histocompatibility complex (MHC) contains genes important for immune response in mammals, and these genes exhibit high polymorphism and diversity. The DRA gene, a member of the MHC class II family, is highly conserved across a large number of mammalian species, but it displays exceptionally rich sequence variations in Equidae members. We analyzed allelic polymorphism of the DRA locus in 248 donkeys sampled across the Balkan Peninsula (Albania, Bulgaria, Croatia, Macedonia, Greece and Montenegro). Five known alleles and two new alleles were identified. The new allele Eqas‐DRA*0601 was found to carry a synonymous mutation, and new allele Eqas‐DRA*0701, a non‐synonymous mutation. We further analyzed the historical selection and allele genealogy at the DRA locus in equids. Signals of positive selection obtained by various tests were ambiguous. A conservative conclusion is that DRA polymorphism occurred relatively recently and that positive selection has been acting on the DRA locus for a relatively brief period. 相似文献
17.
Hanne L?vlie Mark A. F. Gillingham Kirsty Worley Tommaso Pizzari David S. Richardson 《Proceedings. Biological sciences / The Royal Society》2013,280(1769)
Cryptic female choice may enable polyandrous females to avoid inbreeding or bias offspring variability at key loci after mating. However, the role of these genetic benefits in cryptic female choice remains poorly understood. Female red junglefowl, Gallus gallus, bias sperm use in favour of unrelated males. Here, we experimentally investigate whether this bias is driven by relatedness per se, or by similarity at the major histocompatibility complex (MHC), genes central to vertebrate acquired immunity, where polymorphism is critical to an individual''s ability to combat pathogens. Through experimentally controlled natural matings, we confirm that selection against related males'' sperm occurs within the female reproductive tract but demonstrate that this is more accurately predicted by MHC similarity: controlling for relatedness per se, more sperm reached the eggs when partners were MHC-dissimilar. Importantly, this effect appeared largely owing to similarity at a single MHC locus (class I minor). Further, the effect of MHC similarity was lost following artificial insemination, suggesting that male phenotypic cues might be required for females to select sperm differentially. These results indicate that postmating mechanisms that reduce inbreeding may do so as a consequence of more specific strategies of cryptic female choice promoting MHC diversity in offspring. 相似文献
18.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles. 相似文献
19.
Genes of the major histocompatibility complex (Mhc) are the most polymorphic functional loci in mammalian populations, but little is known of Mhc variability in natural populations of nonmammalian vertebrates. To help extend such studies to birds and relatives, we present a pair of degenerate primers that amplify polymorphic segments of one chain (the β chain) of the class II genes from the major histocompatibility complex (Mhc) of archosaurs (birds + crocodilians). The primers target two conserved regions lying within portions of the antigen-binding site (ABS) encoded by the second exon and amplify multiple genes from both genomic DNA and cDNA. The pattern of nucleotide substitution in ABS codons of 51 sequences amplified and cloned from five species of passerine birds and an alligator (Alligator mississippiensis) indicates that archosaurian class II β genes are subject to selective forces similar to those operating in mammalian populations. Hybridization of a genomic clone generated by the primers revealed highly polymorphic bands in a sample of Florida scrub jays (Aphelocoma coerulescens coerulescens). Because the primers amplify only part of the ABS from multiple class II genes, they will be useful primarily for generating species specific clones, thereby providing a critical inroad to more detailed structural and evolutionary studies. 相似文献
20.
Catalina Gonzalez‐Quevedo Lewis G. Spurgin Juan Carlos Illera David S. Richardson 《Molecular ecology》2015,24(23):5852-5863
Understanding the relative role of different evolutionary forces in shaping the level and distribution of functional genetic diversity among natural populations is a key issue in evolutionary and conservation biology. To do so accurately genetic data must be analysed in conjunction with an unambiguous understanding of the historical processes that have acted upon the populations. Here, we focused on diversity at toll‐like receptor (TLR) loci, which play a key role in the vertebrate innate immune system and, therefore, are expected to be under pathogen‐mediated selection. We assessed TLR variation within and among 13 island populations (grouped into three archipelagos) of Berthelot's pipit, Anthus berthelotii, for which detailed population history has previously been ascertained. We also compared the variation observed with that found in its widespread sister species, the tawny pipit, Anthus campestris. We found strong evidence for positive selection at specific codons in TLR1LA, TLR3 and TLR4. Despite this, we found that at the allele frequency level, demographic history has played the major role in shaping patterns of TLR variation in Berthelot's pipit. Levels of diversity and differentiation within and across archipelagos at all TLR loci corresponded very closely with neutral microsatellite variation and with the severity of the bottlenecks that occurred during colonization. Our study shows that despite the importance of TLRs in combating pathogens, demography can be the main driver of immune gene variation within and across populations, resulting in patterns of functional variation that can persist over evolutionary timescales. 相似文献