首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission.  相似文献   

2.
Most avian influenza A viruses, which preferentially replicate at the high temperatures found in the digestive tract of birds, have a glutamic acid at residue 627 of the viral RNA polymerase PB2 subunit (Glu-627), whereas the human viruses, which optimally replicate at the low temperatures observed in the human respiratory tract, have a lysine (Lys-627). The mechanism of action for this mutation is still not understood, although interaction with host factors has been proposed to play a major role. In this study, we explored an alternative, yet related, hypothesis that this PB2 mutation may alter the temperature-dependent enzymatic polymerase activity of the viral polymerase. First, the avian polymerase protein, which was purified from baculovirus expression system, indeed remained significantly active at higher temperatures (i.e. 37 and 42 °C), whereas the human E627K mutant drastically lost activity at these high temperatures. Second, our steady-state kinetics data revealed that the human E627K mutant polymerase is catalytically more active than the avian Glu-627 polymerase at 34 °C. Importantly, the E627K mutation elevates apparent K(cat) at low temperatures with little effect on K(m), suggesting that the E627K mutation alters the biochemical steps involved in enzyme catalysis rather than the interaction with the incoming NTP. Third, this temperature-dependent kinetic impact of the human E627K mutation was also observed with different RNA templates, with different primers and also in the presence of nucleoprotein. In conclusion, our study suggests that the amino acid sequence variations at residue 627 of PB2 subunit can directly alter the enzyme kinetics of influenza polymerase.  相似文献   

3.
4.
5.
Reassortant viruses which possessed the hemagglutinin and neuraminidase genes of wild-type human influenza A viruses and the remaining six RNA segments (internal genes) of the avian A/Pintail/Alberta/119/79 (H4N6) virus were previously found to be attenuated in humans. To study the genetic basis of this attenuation, we isolated influenza A/Pintail/79 X A/Washington/897/80 reassortant viruses which contained human influenza virus H3N2 surface glycoprotein genes and various combinations of avian or human influenza virus internal genes. Twenty-four reassortant viruses were isolated and first evaluated for infectivity in avian (primary chick kidney [PCK]) and mammalian (Madin-Darby canine kidney [MDCK]) tissue culture lines. Reassortant viruses with two specific constellations of viral polymerase genes exhibited a significant host range restriction of replication in mammalian (MDCK) tissue culture compared with that in avian (PCK) tissue culture. The viral polymerase genotype PB2-avian (A) virus, PB1-A virus, and PA-human (H) virus was associated with a 900-fold restriction, while the viral polymerase genotype PB2-H, PB1-A, and PA-H was associated with an 80,000-fold restriction of replication in MDCK compared with that in PCK. Fifteen reassortant viruses were subsequently evaluated for their level of replication in the respiratory tract of squirrel monkeys, and two genetic determinants of attenuation were identified. First, reassortant viruses which possessed the avian influenza virus nucleoprotein gene were as restricted in replication as a virus which possessed all six internal genes of the avian influenza A virus parent, indicating that the nucleoprotein gene is the major determinant of attenuation of avian-human A/Pintail/79 reassortant viruses for monkeys. Second, reassortant viruses which possessed the viral polymerase gene constellation of PB2-H, PB1-A, and PA-H, which was associated with the greater degree of host range restriction in vitro, were highly restricted in replication in monkeys. Since the avian-human influenza reassortant viruses which expressed either mode of attenuation in monkeys replicated to high titer in eggs and in PCK tissue culture, their failure to replicate efficiently in the respiratory epithelium of primates must be due to the failure of viral factors to interact with primate host cell factors. The implications of these findings for the development of live-virus vaccines and for the evolution of influenza A viruses in nature are discussed.  相似文献   

6.
tsFT20 cells, which have temperature-sensitive DNA polymerase alpha-activity, were characterized mainly at the cellular level. The cells lost their ability to synthesize DNA immediately after a shift to non-permissive temperature. The extent of decrease in the activity of DNA polymerase alpha in whole-cell extracts was the same as that of the decrease in the DNA replication ability determined by [3H]thymidine incorporation. At 39 degrees C, tsFT20 cells lost most of their colony-forming ability in one doubling time (16 h). The cells could not grow at higher than 38 degrees C, but could grow at 37 degrees C. When tsFT20 cells were synchronized at the G1/S boundary and incubated at 39 degrees C, they could not complete the S phase, ceasing cell cycle progression in mid-S phase. A temperature shift (33 degrees C----39 degrees C) experiment indicated that the whole S phase was temperature-sensitive, whereas the G2 and M phases were not. These results confirmed that DNA polymerase alpha plays a key role in DNA replication in mammalian cells.  相似文献   

7.
The single gene reassortant virus that derives its PB2 gene from the avian influenza A/Mallard/NY/78 virus and remaining genes from the human influenza A/Los Angeles/2/87 virus exhibits a host range restriction (hr) phenotype characterized by efficient replication in avian tissue and failure to produce plaques in mammalian Madin-Darby canine kidney cells. The hr phenotype is associated with restriction of viral replication in the respiratory tract of squirrel monkeys and humans. To identify the genetic basis of the hr phenotype, we isolated four phenotypic hr mutant viruses that acquired the ability to replicate efficiently in mammalian tissue. Segregational analysis indicated that the loss of the hr phenotype was due to a mutation in the PB2 gene itself. The nucleotide sequences of the PB2 gene of each of the four hr mutants revealed that a single amino acid substitution at position 627 (Glu-->Lys) was responsible for the restoration of the ability of the PB2 single gene reassortant to replicate in Madin-Darby canine kidney cells. Interestingly, the amino acid at position 627 in every avian influenza A virus PB2 protein analyzed to date is glutamic acid, and in every human influenza A virus PB2 protein, it is lysine. Thus, the amino acid at residue 627 of PB2 is an important determinant of host range of influenza A viruses.  相似文献   

8.
The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.  相似文献   

9.
Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice   总被引:2,自引:0,他引:2  
Highly pathogenic avian H5N1 influenza A viruses have spread throughout Asia, Europe, and Africa, raising serious worldwide concern about their pandemic potential. Although more than 250 people have been infected with these viruses, with a consequent high rate of mortality, the molecular mechanisms responsible for the efficient transmission of H5N1 viruses among humans remain elusive. We used a mouse model to examine the role of the amino acid at position 627 of the PB2 viral protein in efficient replication of H5N1 viruses in the mammalian respiratory tract. Viruses possessing Lys at position 627 of PB2 replicated efficiently in lungs and nasal turbinates, as well as in cells, even at the lower temperature of 33 degrees C. Those viruses possessing Glu at this position replicated less well in nasal turbinates than in lungs, and less well in cells at the lower temperature. These results suggest that Lys at PB2-627 confers to avian H5N1 viruses the advantage of efficient growth in the upper and lower respiratory tracts of mammals. Therefore, efficient viral growth in the upper respiratory tract may provide a platform for the adaptation of avian H5N1 influenza viruses to humans and for efficient person-to-person virus transmission, in the context of changes in other viral properties including specificity for human (sialic acid alpha-2,6-galactose containing) receptors.  相似文献   

10.
11.
12.
The hemagglutinin (HA) of H3 human influenza viruses does not support viral replication in duck intestine despite its avian origin. A Leu-to-Gln mutation at position 226 and a Ser-to-Gly mutation at position 228 in the HA of human A/Udorn/307/72 (H3N2) permit a reassortant virus [human Udorn HA, with all other genes from A/mallard/New York/6750/78 (H2N2)] to replicate in ducks. To understand the molecular basis of this change in host range restriction, we investigated the receptor specificity of duck influenza viruses as well as of human-duck virus reassortants. The results indicate that the recognition of a glycoconjugate moiety possessing N-glycolneuramic acid (NeuGc) linked to galactose by the alpha2,3 linkage (NeuGcalpha2,3Gal) is associated with viral replication in duck intestine. Immunofluorescence assays with NeuGcalpha2,3Gal-specific antiserum detected this moiety primarily on the crypt epithelial cells of duck colon. Such recognition, together with biochemical evidence of NeuGc in crypt cells, correlated exactly with the ability of the virus to replicate in duck colon. These results suggest that recognition of the NeuGcalpha2,3-Gal moiety plays an important role in the enterotropism of avian influenza viruses.  相似文献   

13.
Previous attempts to extend the host range of the avian sarcoma/leukosis virus (ASLV)-based RCASBP vectors produced two viral vectors, RCASBP M2C (4070A) and RCASBP M2C (797-8), which replicate using the amphotropic murine leukemia virus 4070A Env protein (2). Both viruses were adapted to replicate efficiently in the avian cell line DF-1, but RCASBP M2C (4070A) caused extensive cytopathic effects (CPE) in DF-1 cells whereas RCASBP M2C (797-8) induced low levels of CPE. The two viruses differed only at amino acid 242 of the polyproline-rich region in the surface (SU) subunit of the Env protein. In RCASBP M2C (4070A), an isoleucine replaced the wild-type proline residue, whereas a threonine residue was found in RCASBP M2C (797-8). In the present study, we show that other amino acid substitutions at position 242 strongly influence the CPE and replication rate of the chimeric viruses. There was a correlation between the amount of unintegrated linear retroviral DNA present in infected DF-1 cells and the level of CPE. This suggests that there may be a role for superinfection in the CPE. The treatment of RCASBP M2C (4070A)-infected cells with dantrolene, which inhibits the release of calcium from the endoplasmic reticulum (ER), reduced the amount of CPE seen during infection with the highly cytotoxic virus. Dantrolene treatment did not appear to affect virus production, suggesting that Ca2+ release from the ER had a role in the CPE caused by these viruses.  相似文献   

14.
Chromosomal DNA replication was examined in temperature-sensitive mutants of Saccharomyces cerevisiae defective in a gene required for the completion of S phase at the nonpermissive temperature, 37 degrees C. Based on incorporation of radioactive precursors and density transfer experiments, strains carrying three different alleles of cdc2 failed to replicate approximately one-third of their nuclear genome at 37 degrees C. Whole-cell autoradiography experiments demonstrated that 93 to 96% of the cells synthesized DNA at 37 degrees C. Therefore, all cells failed to replicate part of their genome. DNA isolated from terminally arrested cells was of normal size as measured on neutral and alkaline sucrose gradients, suggesting that partially replicated DNA molecules do not accumulate and that DNA strands are ligated properly in cdc2 mutants. In addition, electron microscopic examination of the equivalent of more than one genome's DNA from arrested cells failed to reveal any partially replicated molecules. The sequences which failed to replicate at 37 degrees C were not highly specific; eight different cloned sequences replicated to the same extent as total DNA. The 2-microns plasmid DNA and rDNA replicated significantly less well than total DNA, but approximately one-half of these sequences replicated at 37 degrees C. These observations suggest that cdc2 mutants are defective in an aspect of initiation of DNA replication common to all chromosomes such that a random fraction of the chromosomes fail to initiate replication at 37 degrees C, but that once initiated, replication proceeds normally.  相似文献   

15.
The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.  相似文献   

16.
17.
Highly pathogenic H5N1 influenza viruses continue to cause concern, even though currently circulating strains are not efficiently transmitted among humans. For efficient transmission, amino acid changes in viral proteins may be required. Here, we examined the amino acids at positions 627 and 701 of the PB2 protein. A direct analysis of the viral RNAs of H5N1 viruses in patients revealed that these amino acids contribute to efficient virus propagation in the human upper respiratory tract. Viruses grown in culture or eggs did not always reflect those in patients. These results emphasize the importance of the direct analysis of original specimens.Given the continued circulation of highly pathogenic H5N1 avian influenza viruses and their sporadic transmission to humans, the threat of a pandemic persists. However, for H5N1 influenza viruses to be efficiently transmitted among humans, amino acid substitutions in the avian viral proteins may be necessary.Two positions in the PB2 protein affect the growth of influenza viruses in mammalian cells (3, 11, 18): the amino acid at position 627 (PB2-627), which in most human influenza viruses is lysine (PB2-627Lys) and most avian viruses is glutamic acid (PB2-627Glu), and the amino acid at position 701. PB2-627Lys is associated with the efficient replication (16) and high virulence (5) of H5N1 viruses in mice. Moreover, an H7N7 avian virus isolated from a fatal human case of pneumonia possessed PB2-627Lys, whereas isolates from a nonfatal human case of conjunctivitis and from chickens during the same outbreak possessed PB2-627Glu (2).The amino acid at position 701 in PB2 is important for the high pathogenicity of H5N1 viruses in mice (11). Most avian influenza viruses possess aspartic acid at this position (PB2-701Asp); however, A/duck/Guangxi/35/2001 (H5N1), which is highly virulent in mice (11), possesses asparagine at this position (PB2-701Asn). PB2-701Asn is also found in equine (4) and swine (15) viruses, as well as some H5N1 human isolates (7, 9). Thus, both amino acids appear to be markers for the adaptation of H5N1 viruses in humans (1, 3, 17).Massin et al. (13) reported that the amino acid at PB2-627 affects viral RNA replication in cultured cells at low temperatures. Recently, we demonstrated that viruses, including those of the H5N1 subtype, with PB2-627Lys (human type) grow better at low temperatures in cultured cells than those with PB2-627Glu (avian type) (6). This association between the PB2 amino acid and temperature-dependent growth correlates with the body temperatures of hosts; the human upper respiratory tract is at a lower temperature (around 33°C) than the lower respiratory tract (around 37°C) and the avian intestine, where avian influenza viruses usually replicate (around 41°C). The ability to replicate at low temperatures may be crucial for viral spread among humans via sneezing and coughing by being able to grow in the upper respiratory organs. Therefore, the Glu-to-Lys mutation in PB2-627 is an important step for H5N1 viruses to develop pandemic potential.However, there is no direct evidence that the substitutions of PB2-627Glu with PB2-627Lys and PB2-701Asp with PB2-701Asn occur during the replication of H5N1 avian influenza viruses in human respiratory organs. Therefore, here, we directly analyzed the nucleotide sequences of viral genes from several original specimens collected from patients infected with H5N1 viruses.  相似文献   

18.
Mutations in the polymerase basic 2 (PB2) gene of avian influenza viruses are important signatures for their adaptation to mammalian hosts. Various adaptive mutations have been identified around the 627 and nuclear localization sequence (NLS) domains of PB2 protein, and these mutations contribute to the replicative ability of avian influenza viruses. However, few studies have focused on adaptive mutations in other regions of PB2. In this study, we investigated the functional roles of the D253N mutation in PB2 in an H9N2 virus. This mutation was found to affect an amino acid residue in the middle domain of the PB2 protein. The virus with the D253N mutation showed higher polymerase activity and transiently increased viral replication in human cells. However, the mutant did not show significant differences in viral replication in the respiratory tract of mice upon infection. Our results supported that the D253N mutation in the middle domain of PB2, similar to mutations at the 627 and NLS domains, specifically contributed to the replication of avian influenza viruses in human cells.  相似文献   

19.
Human enteric viruses have been found in groundwater in the absence of fecal coliforms. Because detection of human enteric viruses is costly, time-consuming, and lacking in sensitivity, F-specific RNA (FRNA) coliphages, which infect Escherichia coli by attachment to F pili, are being examined for suitability as indicators of human enteric viruses in groundwater. Temperatures and host cell growth conditions that constrain F-pilus expression will limit FRNA coliphage replication in groundwater and wastewater, as is desirable in an indicator. Below 25 degrees C F-pilus synthesis ceases; FRNA coliphage Qbeta did not replicate below this temperature in batch cultures. One-step replication studies indicated that the replicative cycle is prolonged and that fewer progeny are released as the temperature decreases. The decreases in phage replication observed in the one-step replication studies were a consequence of fewer cells infected as the temperature was lowered or as host cells entered stationary phase. The numbers of phage particles released from infected cells did not change. The minimum temperature for replication of Qbeta, 25 degrees C, is not maintained in wastewater and does not occur in Wisconsin groundwater. On the basis of temperature and host cell growth phase, we have concluded that extensive replication of FRNA coliphages does not occur in wastewater and groundwater in Wisconsin and areas with similar cool climates.  相似文献   

20.
We have shown that heat shock does not induce the synthesis of hsp70 in FM3A cells maintained at a low culture temperature of 33 degrees C although it does so in cells maintained at 37 degrees C [T. Hatayama et al. (1991) Biochem. Int. 24, 467-474]. In this paper, we show that FM3A cells maintained at 37 degrees C produced hsp70 mRNA during continuous heating at 42 degrees C or during postincubation at either 37 or 33 degrees C after being heated at 45 degrees C for 15 min, whereas cells maintained at 33 degrees C did not produce hsp70 mRNA during continuous heating at 37, 39, 42, or 45 degrees C, or during postincubation after being heated at any temperature. Thus the lack of hsp70 synthesis in cells maintained at 33 degrees C seemed to be due to the absence of hsp70 mRNA induction. Also, hsp70 was accumulated in cells maintained at 37 degrees C during continuous heating at 42 degrees C and during postincubation at 37 degrees C after heat shock at 45 degrees C, but not during postincubation at 33 degrees C. The cellular level of the constitutive hsp73 as well as the mRNA level were both similar in cells maintained at 33 and 37 degrees C. On the other hand, the cellular level of the constitutive hsp105 in cells maintained at 33 degrees C was only half of that in cells maintained at 37 degrees C. These hsp105 levels increased significantly in both types of cells after continuous heating at 39 degrees C. These findings indicate that the culture temperature affects not only the induction of hsp70 mRNA but also the accumulation of hsp70 and hsp105 in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号