首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The cytosol of hepatopancreas was prepared from the freshwater prawn Macrobrachium malcolmsonii, and optimal assay conditions, i.e., concentration of substrate, pH, and temperature, were determined to measure basal activities and kinetic constants of catalase activity. The properties of catalase were examined in M. macolmsonii, because quantitative data on catalase are limited in crustacean species. The optimal pH for catalase was 7.0. The activation energy was 3.55 Kcal/mol and energy inhibition value was 5.16 Kcal/mol. The value of energy inhibition is higher than that of energy activation. This may be due to inhibition of catalase by some substrate other than H2O2. A Km of 66.6 mM was also determined from various concentrations of substrate.  相似文献   

2.
The cytosol of hepatopancreas was prepared from the freshwater prawn Macrobrachium malcolmsonii, and optimal assay conditions, i.e., concentration of substrate, pH, and temperature, were determined to measure basal activities and kinetic constants of catalase activity. The properties of catalase were examined in M. macolmsonii, because quantitative data on catalase are limited in crustacean species. The optimal pH for catalase was 7.0. The activation energy was 3.55 Kcal/mol and energy inhibition value was 5.16 Kcal/mol. The value of energy inhibition is higher than that of energy activation. This may be due to inhibition of catalase by some substrate other than H2O2. A Km of 66.6?mM was also determined from various concentrations of substrate.  相似文献   

3.
Yamazaki S  Morioka C  Itoh S 《Biochemistry》2004,43(36):11546-11553
Tyrosinase is a copper monooxygenase containing a coupled dinuclear copper active site (type-3 copper), which catalyzes oxygenation of phenols (phenolase activity) as well as dehydrogenation of catechols (catecholase activity) using O(2) as the oxidant. In this study, catalase activity (conversion of H(2)O(2) to (1/2)O(2) and H(2)O) and peroxygenase activity (H(2)O(2)-dependent oxygenation of substrates) of mushroom tyrosinase have been examined kinetically by using amperometric O(2) and H(2)O(2) sensors. The catalase activity has been examined by monitoring the initial rate of O(2) production from H(2)O(2) in the presence of a catalytic amount of tyrosinase in 0.1 M phosphate buffer (pH 7.0) at 25 degrees C under initially anaerobic conditions. It has been found that the catalase activity of mushroom tyrosinase is three-order of magnitude greater than that of mollusk hemocyanin. The higher catalase activity of tyrosinase could be attributed to easier accessibility of H(2)O(2) to the dinuclear copper site of tyrosinase. Mushroom tyrosinase has also been demonstrated for the first time to catalyze oxygenation reaction of phenols with H(2)O(2) (peroxygenase activity). The reaction has been investigated kinetically by monitoring the H(2)O(2) consumption rate in 0.5 M borate buffer (pH 7.0) under aerobic conditions. Similarity of the substituent effects of a series of p-substituted phenols in the peroxygenase reaction with H(2)O(2) to those in the phenolase reaction with O(2) as well as the absence of kinetic deuterium isotope effect with a perdeuterated substrate (p-Cl-C(6)D(4)OH vs p-Cl-C(6)H(4)OH) clearly demonstrated that the oxygenation mechanisms of phenols in both systems are the same, that is, the electrophilic aromatic substitution reaction by a (micro-eta(2):eta(2)-peroxo)dicopper(II) intermediate of oxy-tyrosinase.  相似文献   

4.
The pH-dependence of the kinetic parameters in H2O2 decomposition by beef liver catalase was investigated. At pH 7.0, the ternary complex (ESS) decomposition rate was about 100 times faster than ESS formation (42 microM H2O2), and the value of the Michaelis constant was 0.025 M. From ethanol competition experiments, two different proton dissociation constants of the enzyme (pKe1 = 5.0, pKes2 = 5.9) were obtained for the binding of first and second H2O2 molecules. Another pKa value (pKes1) of 4.2 was obtained from the pH dependence of overall rate constant (ko). The reaction mechanism of catalase was discussed in relation to these ionizable groups.  相似文献   

5.
Extracellular catalases produced by fungi of the genus Penicillium: P. piceum, P. varians and P. kapuscinskii were purified by consecutive filtration of culture liquids. The maximum reaction rate of H2O2 decomposition, the Michaelis constants and specific catalytic activities of isolated catalases were determined. The operational stability was characterized by effective rate of catalase inactivation during enzymatic reaction (kin at 30 degrees C). The thermal stability was determined by the rate of enzyme thermal inactivation at 45 degrees C (k*[symbol: see text]H, s-1). Catalase from P. piceum displayed the maximum activity, which was higher than the activity of catalase from bovine liver. The operational stability of catalase from P. piceum was twofold to threefold higher than the stability of catalase from bovine liver. The physicochemical characteristics of catalases of fungi are better than the characteristics of catalase from bovine liver and intracellular catalase of yeast C. boidinii.  相似文献   

6.
A comparative kinetic study of extracellular catalases produced by Penicillium piceum F-648 and their variants adapted to H2O2 was performed in culture liquid filtrates. The specific activity of catalase, the maximum rate of catalase-induced H2O2 degradation (Vmax),Vmax/KM ratio, and the catalase inactivation rate constant in the enzymatic reaction (kin, s-1) were estimated in phosphate buffer (pH 7.4) at 30 degrees C. The effective constant representing the rate of catalase thermal inactivation (kin*, s-1) was determined at 45 degrees C. In all samples, the specific activity and KM for catalase were maximum at a protein concentration in culture liquid filtrates of 2.5-3.5 x 10(-4) mg/ml. The effective constants describing the rate of H2O2 degradation (k, s-1) were similar to that observed in the initial culture. These values reflected a twofold decrease in catalase activity in culture liquid filtrates. We hypothesized that culture liquid filtrates contain two isoforms of extracellular catalase characterized by different activities and affinities for H2O2. Catalases from variants 5 and 3 with high and low affinities for H2O2, respectively, had a greater operational stability than the enzyme from the initial culture. The method of adaptive selection for H2O2 can be used to obtain fungal variants producing extracellular catalases with improved properties.  相似文献   

7.
The catalytic decomposition of H2O2 by deuteroferrihaem, mesoferrihaem, coproferrihaem and haematoferrihaem was studied as a model for the mechanism of action of catalase. For haematoferrihaem, anomalous but reproducible results were obtained, which could not be adequately explained. For each of the other ferrihaems studied, both monomeric and dimeric species catalysed decomposition, although the activity of monomer (aM) was much greater than that of dimer (aD). The pH variation of aD in the range 6.5--11 was consistent with an inverse dependence on [H+]1/2. The molecular mechanism whereby such a dependence could be achieved is not apparent. A study of the pH-dependence of aM in the range 6.5--11 revealed a linear inverse relationship with [H+]. This is interpreted in terms of attack by HO2- on ferrihaem monomer. The specific pH-independent rate constants for this reaction were in the order coproferrihaem greater than protoferrihaem greater than or equal to mesoferrihaem congruent to deuteroferrihaem. The order of magnitude of these rate constants is the same as that for catalysis by Fe(H2O)63+ and the second-order rate constant for decomposition of H2O2 by catalase. The implications on the mechanism of action of catalase are discussed.  相似文献   

8.
A catalase that exhibits a high level of activity and a rapid reaction with organic peroxides has been purified from Exiguobacterium oxidotolerans T-2-2T (EKTA catalase). The amino acid sequence of EKTA catalase revealed that it is a novel clade 1 catalase. Amino acid residues in the active site around the protoheme are conserved in the primary structure of EKTA catalase. Although the general interactions of molecules larger than hydrogen peroxide with catalases are strongly inhibited because of the selection role of long and narrow channels in the substrate reaching the active site, the formation rate of reactive intermediates (compound I) in the reaction of EKTA catalase with peracetic acid is 77 times higher than that of bovine liver catalase (BLC) and 1200 times higher than that of Micrococcus luteus catalase (MLC). The crystal structure of EKTA catalase has been determined and refined to 2.4 A resolution. The main channel structure of EKTA catalase is different from those of BLC and MLC. The rate constant of compound I formation in catalases decreased with an increase in the molecular size of the substrate. For EKTA catalase with a larger bottleneck 15 A from the iron (entrance of narrow channel) in the main channel, a lower rate of reduction in compound I formation rate with an increase in the molecular size of substrates was found. The increase in the rate constant of compound I formation in these catalases was directly proportional to the increase in the size of the bottleneck in the main channel when molecules of substrates larger than H2O2, such as organic peroxides, are used in the reaction. The results indicate that the size of the bottleneck in the main channel in catalase is an important factor in defining the rate of compound I formation corresponding to the molecular size of the substrates, and this was demonstrated. The Leu149-Ile180 and Asp109-Met167 combinations at the entrance of the narrow channel in EKTA catalase determine the size of the bottleneck, and each atom-to-atom distance for the combination of residues was larger than those of corresponding combinations of amino acid residues in BLC and MLC. The combination of these four amino acids is quite specific in EKTA catalase as compared with the combinations in other catalases in the gene database (compared with more than 432 catalase genes in the database).  相似文献   

9.
This study was aimed at assessing the relative contributions to H(2)O(2) detoxification by glutathione peroxidase and catalase in the mitochondrial matrix of heart. For this purpose, mitoplasts from rat heart were used in order to minimize contamination with microperoxisomes, and the kinetic rate constants of both enzymatic activities were determined along with a simulation profile. Results show that the contribution of catalase to H(2)O(2) removal in heart mitochondria is not significant, even under strong oxidative conditions, such as those achieved in ischemia-reperfusion and involving extensive glutathione depletion and high H(2)O(2) concentrations. Conversely, maintenance of the steady state levels of H(2)O(2) in the heart mitochondrial matrix seems to be the domain of glutathione peroxidase. It is suggested that the physiological role of the low amounts of catalase found in heart mitochondria is related to its peroxidatic rather than catalatic activity.  相似文献   

10.
一株嗜热子囊菌产生的碱性耐热过氧化氢酶及其应用潜力   总被引:11,自引:0,他引:11  
研究了一株嗜热子囊菌产过氧化氢酶的摇瓶发酵条件,并对其在纺织工业中的应用潜力进行了评价。以20 g/L糊精和1%(V/V)乙醇为混合碳源时,过氧化氢酶酶活达到1594 u/Ml,比以糊精和乙醇单独为碳源时过氧化氢酶的活力之和还高23%。改变培养基的初始Ph、提高发酵液中的溶氧水平及添加外源过氧化氢,过氧化氢酶的产量进一步提高到2762 u/Ml,比优化前提高了5.8倍。将嗜热子囊菌的过氧化氢酶同来源于牛肝、黑曲霉的过氧化氢酶进行了热(70℃, 80℃, 90℃)、碱(Ph 9.0, Ph 10.0, Ph 11.0)稳定性的比较。结果显示,产自嗜热子囊菌的过氧化氢酶对高温和强碱性的耐受性能明显优于其它来源的酶,在纺织染整工艺中具有良好的应用潜力。  相似文献   

11.
The reaction of horse spleen ferritin (HoSF) with Fe2+ at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approximately 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe2+ was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H2O2 reactions were well defined from 15 to 40 degrees C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approximately 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 s(-1)) and H2O2 (0.67 s(-1)) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 microM. This low value and reported Fe2+/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated [Biochemistry 22 (1983) 876; Biochemistry 40 (2001) 10832].  相似文献   

12.
Fundamental studies on the availability of oxygen from the decomposition of H(2)O(2), in vivo, by Xanthomonas campestris, when H(2)O(2) is used as an oxygen source are presented. It was found that the H(2)O(2) added extracellularly (0.1-6 mM) was decomposed intracellularly. Further, when H(2)O(2) was added, the flux of H(2)O(2) into the cell, is regulated by the cell. The steady-state H(2)O(2) flux into the cell was estimated to be 9.7 x 10(-8) mol m(-2) s(-1). In addition, it was proved that the regulation of H(2)O(2) flux was coupled to the protonmotive force (PMF) using experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which disrupts PMF. The coupling constant between the rate of free energy availability from PMF and the rate of reduction of H(2)O(2) flux, was found to be 46.4 mol m(-2) s(-1) J(-1) from simulations using a developed model. Also, the estimated periplasmic catalase concentration was 1.4 x 10(-9) M.  相似文献   

13.
Hyperoxia increases H2O2 production by brain in vivo   总被引:9,自引:0,他引:9  
Hyperoxia and hyperbaric hyperoxia increased the rate of cerebral hydrogen peroxide (H2O2) production in unanesthetized rats in vivo, as measured by the H2O2-mediated inactivation of endogenous catalase activity following injection of 3-amino-1,2,4-triazole. Brain catalase activity in rats breathing air (0.2 ATA O2) decreased to 75, 61, and 40% of controls due to endogenous H2O2 production at 30, 60, and 120 min, respectively, after intraperitoneal injection of 3-amino-1,2,4-triazole. The rate of catalase inactivation increased linearly in rats exposed to 0.6 ATA O2 (3 ATA air), 1.0 ATA O2 (normobaric 100% O2) and 3.0 ATA O2 (3 ATA 100% O2) compared with 0.2 ATA O2 (room air). Catalase inactivation was prevented by pretreatment of rats with ethanol (4 g/kg), a competitive substrate for the reactive catalase-H2O2 intermediate, compound I. This confirmed that catalase inactivation by 3-amino-1,2,4-triazole was due to formation of the catalase-H2O2 intermediate, compound I. The linear rate of catalase inactivation allows estimates of the average steady-state H2O2 concentration within brain peroxisomes to be calculated from the formula: [H2O2] = 6.6 pM + 5.6 ATA-1 X pM X [O2], where [O2] is the concentration of oxygen in ATA that the rats are breathing. Thus the H2O2 concentration in brains of rats exposed to room air is calculated to be about 7.7 pM, rises 60% when O2 tension is increased to 100% O2, and increases 300% at 3 ATA 100% O2, where symptoms of central nervous system toxicity first become apparent. These studies support the concept that H2O2 is an important mediator of O2-induced injury to the central nervous system.  相似文献   

14.
A method for recording O2 concentrations in nonconducting organic media with the Clark oxygen electrode was developed. Spontaneous oxidation of Na2S2O4 and the enzymatic reduction of NaBO3 or H2O2 by bovine liver catalase trapped in hydrated micelles of dioctylsulfosuccinate (AOT)/toluene were used as model systems. O2 titration with the above systems showed that air-saturated 1.6 M H2O/0.2 M AOT/toluene media contain seven times more O2 (1.4 mM) than aqueous solutions (0.2 mM). The measured Km values of catalase for NaBO3 and H2O2 in organic media were Kmov = 15 and 17 mM, respectively, whereas in aqueous buffer the values were 45 and 54 mM. In the toluene media, catalase activity increased with the W0 (H2O/AOT molar ratio) of the micellar preparation, reaching maximal activity at W0 = 10-12; under this condition, the catalytic center activity (Kp) of H2O2 was 7 x 10(6) min-1, similar to that obtained in the aqueous buffer (H2O2 = 7 x 10(6) min-1). It was found that the optimal pH for catalase in toluene media (pH 8.0) was shifted 1.0 unit compared to that in the aqueous buffer (pH 7.0). On the other hand, catalase was severely inhibited by NaN3 in both media. Thus, polarography based on the Clark oxygen electrode seems to be an easy, rapid, and sensitive technique for studying enzyme reactions consuming or evolving O2 in apolar media.  相似文献   

15.
To investigate the role of catalase and superoxide dismutase (SOD) in the acetic acid (AA) induced yeast programmed cell death (AA-PCD), we compared Saccharomyces cerevisiae cells (C-Y) and cells individually over-expressing catalase T (CTT1-Y) and Cu,Zn-SOD (SOD1-Y) with respect to cell survival, hydrogen peroxide (H2O2) levels and enzyme activity as measured up to 200 min after AA treatment. AA-PCD does not occur in CTT1-Y, where H2O2 levels were lower than in C-Y and the over-expressed catalase activity decreased with time. In SOD1-Y, AA-PCD was exacerbated; high H2O2 levels were found, SOD activity increased early, remaining constant en route to AA-PCD, but catalase activity was strongly reduced.  相似文献   

16.
NADPH is known to be tightly bound to mammalian catalase and to offset the ability of the substrate of catalase (H2O2) to convert the enzyme to an inactive state (compound II). In the process, the bound NADPH becomes NADP+ and is replaced by another molecule of NADPH. This protection is believed to occur through electron tunneling between NADPH on the surface of the catalase and the heme group within the enzyme. The present study provided additional support for the concept of an intermediate state of catalase, through which NADPH serves to prevent the formation (rather than increase the removal) of compound II. In contrast, the superoxide radical seemed to bypass the intermediate state since NADPH had very little ability to prevent the superoxide radical from converting catalase to compound II. Moreover, the rate of NADPH oxidation was several times the rate of compound II formation (in the absence of NADPH) under a variety of conditions. Very little NADPH oxidation occurred when NADPH was exposed to catalase, H2O2, or the superoxide radical separately. That the ratio exceeds 1 suggests that NADPH may protect catalase from oxidative damage through actions broader than merely preventing the formation of compound II.  相似文献   

17.
18.
Composition of the culture medium, growth phase, and temperature play important roles in the sensitivity of Escherichia coli to H2O2. The medium and growth phase affected the sensitivity of the cells to H2O2 by modifying the amount of catalase synthesized by them, whereas the effect of temperature was due to the thermolability of the enzyme. Since catalase is unstable in the presence of its substrate, the correlation between the catalase level in the cells and their sensitivity to H2O2 could be observed only when the H2O2 concentration was not excessive in proportion to the amount of catalase.  相似文献   

19.
We assessed the catalase bioactivity and hydrogen peroxide (H(2)O(2)) production rate in human breast cancer (HBC) cell lines and compared these with normal human breast epithelial (HBE) cells. We observed that the bioactivity of catalase was decreased in HBC cells when compared with HBE cells. This was also accompanied by an increase in H(2)O(2) steady-state levels in HBC cells. Silencing the catalase gene led to a further increase in the steady-state level of H(2)O(2) which was also accompanied by an increase in growth rate of HBC cells. Catalase activity was up regulated on treatment with superoxide (O(2)(-)) scavengers such as pegylated SOD (PEG-SOD, indicating inhibition of catalase by the increased O(2)(-) produced by HBC cells. Transfection of either catalase or glutathione peroxidase to HBC cells decreased intracellular H(2)O(2) levels and led to apoptosis of these cells. The H(2)O(2) produced by HBC cells inhibited PP2A activity accompanied by increased phosphorylation of Akt and ERK1/2. The importance of catalase bioactivity in breast cancer was further confirmed as its bioactivity was also decreased in human breast cancer tissues when compared to normal breast tissues. We conclude that inhibition of catalase bioactivity by O(2)(-) leads to an increase in steady-state levels of H(2)O(2) in HBC cells, which in turn inhibits PP2A activity, leading to phosphorylation of ERK 1/2 and Akt and resulting in HBC cell proliferation.  相似文献   

20.
Photosystem II reaction centers evolve O2 in the dark when H2O2 is added as a substrate. Although some of this activity can be attributed to catalase, as much as 75% of the activity was not affected by the addition of 1 mM KCN. Several lines of evidence demonstrate that this KCN-insensitive O2 evolution from H2O2 in the dark is catalyzed by the cycling of S states in the oxygen-evolving complex including: inactivation of H2O2-mediated O2 evolution by Ca/EDTA washing; susceptibility of the activity to inhibition by amines like ammonia and Tris; inhibition by CCCP which is known to accelerate the rate of deactivation of the S2 state and; a direct dependence of the rate of O2 evolution on the presence of calcium and chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号